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ABSTRACT

The release of large language models (LLMs) like ChatGPT has rev-

olutionized software development. Numerous studies are exploring

the generated response quality of ChatGPT, the effectiveness of

different prompting techniques, and its performance in program-

ming contests, among other aspects. However, there is limited

information regarding the practical usage of ChatGPT by software

developers. This data mining challenge focuses on DevGPT, a cu-

rated dataset of developer-ChatGPT conversations encompassing

prompts with ChatGPT’s responses, including code snippets. Our

paper leverages this dataset to investigate (RQ1) whether ChatGPT

generates Python & Java code with quality issues; (RQ2) whether

ChatGPT-generated code is merged into a repository, and, if it does,

to what extent developers change them; and (RQ3) what are the

main use cases for ChatGPT besides code generation. We found

that ChatGPT-generated code suffers from using undefined/unused

variables and improper documentation. They are also suffering

from improper resources and exception management-related se-

curity issues. Our results show that ChatGPT-generated codes are

hardly merged, and they are significantly modified before merging.

Instead, based on an analysis of developers’ discussions and the

developer-ChatGPT chats, we found that developers use this model

for every stage of software development and leverage it to learn

about new frameworks and development kits.
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1 INTRODUCTION

The release of GitHub Copilot [16] and ChatGPT [2], two code

generation assistants based on Large Language Models (LLMs), is

reshaping software development [27]. A recent survey [30] showed

that 92% of 500 US-based developers are using LLM-based code

generation tools for both work and personal use. Code genera-

tion models help developers automate repetitive tasks, focusing on

higher-level challenging tasks [43].

Although these code generation assistants are increasingly popular

among developers [43], prior studies have shown that they can

generate code that contains quality issues, such as code smells,

security smells, and vulnerabilities [25, 33]. A recent study [32] also

showed that code generation models are fine-tuned with samples

containing code/security smells that leak to the generated code.

With the increasing use of LLM-based code assistants, these prob-

lematic code snippets can get deployed into production, negatively

affecting the software system’s security and reliability.

Although there are studies about code generation models [25, 32],

there is no study about chat-style multimodel, i.e., ChatGPT [2]. As

developers can make conversations about software development

that are not limited to traditional code generation, ChatGPT can pro-

vide answers to developers in every step of software development

(e.g., software management, testing, deployment etc.). Moreover,
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there is no study about the ChatGPT-generated code from the per-

spective of code quality issues mined from real software developers’

prompts.

Thus, in this data mining challenge, our work investigates the qual-

ity issues of ChatGPT-generated code and their influence on devel-

opers’ discussions. We used the DevGPT dataset [42] to investigate

the code and security smells in the generated Python and Java code

using three static analyzers, Pylint [4], Bandit [1] and CodeQL [17].

We also investigated if the ChatGPT-generated Code merged into

the code base. Furthermore, we did an open coding of the discussion

and conversations in the pull requests where developers posted

ChatGPT share links.

Our work provides the first view of quality issues in the code gen-

erated by ChatGPT and how the code is used among software

developers. Our result shows that ChatGPT-generated codes have

issues using undefined and unused variables and no proper docu-

mentation. They also suffer from improper resources, exceptions,

and cryptography security management and use hard-coded cre-

dentials. Our result also shows that most ChatGPT-generated codes

are not merged from the pull requests. Developers use the con-

versation to learn about libraries, frameworks, refactoring, and

debugging code. The replication package can be found here: https:

//anonymous.4open.science/r/DevGPT-Study/.

2 BACKGROUND AND RELATEDWORK

This section provides a high-level overview of code generation and

code quality issues and related papers.

2.1 LLM-based Code Generation

LLM-based code generation techniques produce source code from

av given prompt. A prompt can be a combination of natural lan-

guage and source code. The code generation problem can be treated

as a sequence-to-sequence (seq2seq) learning problem [35] and prior

works used Recurrent Neural Networks (RNN) and neural networks

based on Long Short-Term Memory (LSTM) [31, 35] to generate

source code. More recently, the attention-based transformer archi-

tecture revolutionized the field of language learning [40]. There are

several transformer-based deep learning models that are fine-tuned

with code-related datasets for source code generation [18, 20, 36],

search [11], and summarization [14]. Examples of this type of model

include CodeBERT [11], CodeT5 [41], and Codex [8]. Codex models

are powering GitHub Copilot [16], which are descendants of GPT-3

model [6]. ChatGPT is optimized for conversation and also can

produce source code.

2.2 Code Smell

A code smell (“bad code smell” or “smell”) is an indicator of an

improper choice of system design and implementation strategy

[12, 13]. These flaws can stifle software development or increase

the chance of future errors or failures [26]. An example of a smell

taken from Siddiq et al. [32] is using the wrong exception catching
order, as shown in Figure 1. The TypeError block is never reached,

as the Exception block will catch all exceptions.

Security code smells (or simply “security smells”) are a subset

of code smells. They are common code patterns that may lead to

Code smell example
1 try:
2 age = int(input())
3 except Exception: raise
4 except TypeError: raise

Security smell example
1 def verifyAdmin(password):
2 if password != "passw0rd!":
3 return False
4 return True

Figure 1: Examples of a code smell and a security smell

security flaws [28, 29, 32]. Although security smells may not be a

vulnerability per se, they are symptoms that signal the prospect

of a vulnerability [15]. For example, the code snippet in Figure 1

has a security smell related to the use of hard-coded credentials
(CWE-798) [32]. This code snippet checks the password to a hard-

coded string (i.e., "passw0rd!"), which can be exploited using a list

of commonly used passwords.

Code and security smells introduce quality issues and negatively

affect a project’s maintainability, readability, and security [13].

As manually identifying smells is time-consuming and may not

scale [21], several works [7, 19, 24] developed techniques to detect

code smells. Lanza and Marinescu [21] proposed a metric-based

detection strategy to detect code smells, while Chen et al. [9] imple-

mented a code smell detection tool, Pysmell, which can detect 11

code smells in a Python project. Di Nucci et al. [10] described ma-

chine learning-based experiments with a new dataset configuration

that includes instances of multiple types of smells.

2.3 Empirical Studies on Code LLMs

Prior works investigated the usability of code generation mod-

els [38], whether they can generate vulnerable code [25] or whether

it is as bad as humans in generating insecure code [5]. Siddiq et
al. [32] focused on quality issues in the code generation datasets

and their leakage from the closed and open source models. In other

projects, they created a dataset and framework to systematically

evaluate generated code from the security perspective [33, 34]. Liu

et al. [22] focused on the quality issues of ChatGPT-generated code,

but they are limited to programming problems from LeetCode [3].

Unlike these prior studies, we study real prompts made by software

developers who used ChatGPT to generate code.

3 METHODOLOGY

In this study, we answer three research questions:

RQ1 Does ChatGPT generate code with smells?

A recent study [32] showed that datasets used to train open-source
LLMs contain code and security smells that leak to the output

generated by these models. In this RQ, we investigate whether

ChatGPT, a closed-source LLM, also generates code with quality

issues, i.e., containing code smells and security smells.

RQ2 Are ChatGPT-generated source codes merged into open
source projects?

In this RQ, we investigate whether developers reuse code generated

by ChatGPT in merged pull requests. In doing so, we also inspect

what type of changes (if any) developers make prior to merging the

generated code into production.

RQ3 How are developers using ChatGPT?

https://anonymous.4open.science/r/DevGPT-Study/
https://anonymous.4open.science/r/DevGPT-Study/
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In this question, we aim to understand the use cases for ChatGPT be-

yond code generation. We investigate how developers use ChatGPT

by analyzing the chat conversations.

To answer these RQs, we use the DevGPT dataset [42]. This dataset

contains ChatGPT sharing links found in posts made on Hack-

erNews as well as in code files, commits, issues, pull requests, and

discussions posted on GitHub. This dataset has 2,345 share links.

Each shared link corresponds to a chat between a developer and

ChatGPT. This chat conversation can include not only natural lan-

guage but also code written in different programming languages. In

this study, we focus on the generation of code written in Python and

Java as these are two popular languages among developers [23]. The

next sections describe how we answer each of these RQs.

3.1 RQ1: Smells in Generated Code

To answer RQ1, we retrieved all share links mined from GitHub,

i.e., links found in files, commits, issues, pull requests (PRs), or PRs’

discussions. Next, we excluded conversations that did not include

code written in Python or Java. This way, we obtained 696 Python

files from 357 ChatGPT conversations. Since 52 of these Python

files (7.47%) had syntax errors, in the end, we had 644 ChatGPT-

generated Python codes. In the case of Java, we initially obtained

147 Java files from 69 ChatGPT conversations. We converted them

into Maven projects, named the files according to the public class’

name, and added dependencies as needed in order to make the code

compilable. Yet, not all the generated Java codes could be compiled

as some used classes that were not available in the conversation.

Once we discarded uncompilable samples, in the end, we had a total

of 67 Java source codes from 35ChatGPT conversations. To identify

quality issues, we ran Pylint (v3.0.2) [4] and Bandit (v1.7.5) [1] on

the Python files andCodeQL (v2.14.6) [17] for the Java files.

Code Smell Analyzers.

- Pylint [4] is a static analyzer for Python that can display five

message types: fatal (i.e., unable to process the file), error (i.e.,
code smells that may lead to runtime errors),warning (i.e., Python-
specific smells), convention (i.e., coding standard violations), and

refactor (i.e., code smells that can be fixed through refactoring).

Similar to a prior study [32], we ignored messages related to style

issues about whitespaces, newlines, and invalid names
1
as well as

import-related messages
2
as Pylint is not reliable in checking for

import statements’ usage [39]. We also omitted fatal messages.

- Bandit [1] is a static analyzer that detects security smells in
Python code. Each detected security smell maps to an ID from

the Common Weakness Enumeration (CWE ID) [37].

- CodeQL [17] is a static analyzer that checks for style issues and

vulnerabilities in a project by executing QL queries against a

database generated from the source code. We used CodeQL to

check for issues related to the following categories: Advisory,

1C0303-trailing-whitespace, C0304-missing-final-newline, C0305-trailing-newlines, and
C0103-invalid-name.
2W0611-unused-import, W0401-wildcard-import, W0404-reimported, W0614-unused-
wildcard-import, C0410-multiple-imports, C0411-wrong-import-order, C0412-ungrouped-
imports, C0413-wrong-import-position, C0414-useless-import-alias, C0415-import-
outside-toplevel, C2403-non-ascii-module-import, R0402-consider-using-from-import, and
E0401-import-error.

Architecture, Compatibility, Complexity, Dead Code, Language
Abuse, Performance, Violations of Best Practices and Security.

3.2 RQ2: Generated Code in Merged PRs

To answer RQ2, we leveraged the metadata data from pull requests

(PRs) where ChatGPT share links were mentioned. We only in-

cluded PRs whose status was “merged” and that had at least one
modified/added Python or Java file, obtaining a total of 50 pull

requests. We then manually inspect each of these PRs and compare

them with the source file(s) in the pull request in order to identify

the files that contain verbatim copies or similar code to the ones

generated by ChatGPT. For each PR, we also note what changes (if

any) were made by developers to the generated code before making

the pull request.

3.3 RQ3: ChatGPT Use Cases

In RQ3, we analyzed the developers’ discussion in 39 out of the 50

pull requests retrieved in RQ2, along with the chat conversation
within the ChatGPT share link. We could not analyze 11 PR dis-

cussions as they were not in English or had no discussion texts.

During this open coding, we analyzed the pull request’s title, body,

and each comment made by the developers where the ChatGPT

conversation is mentioned (if it is not mentioned in the PR body).

We analyzed the context in order to annotate them with concepts

(codes). This coding was performed by one of the authors of this

paper, who has a software development experience of 2 years. The

open code was then vetted by two other authors with 3 and 10 years

of experience each. After reviewing the pull request information,

we collaboratively highlighted the key points (which are presented

in Section 4.3).

4 RESULTS

This section describes our findings and answers our RQs.

4.1 RQ1: Generated Code Quality

Table 1 shows the quality issues found by Pylint, Bandit, and Cod-

eQL to the Python/Java code generated by ChatGPT. We found

that most messages for Python files are error and convention type.

The top messages for each category are undefined variables,missing
docstrings, too few public methods in a generated class, and redefining
a variable declared in the outer scope. ChatGPT-generated code also

suffers from security issues. Results from Bandit [1] show that there

are 84 security issues and the top three of them are requests without
a timeout (CWE-400: Uncontrolled Resource Consumption), using
pseudo-random generators (CWE-330: Use of Insufficiently Random

Values) and using asserts (CWE-703: Improper Check or Handling

of Exceptional Conditions).

For Java code, the issues are about not using proper JavaDoc in
public methods, constructors, or variables, dead code, unused maven
dependencies, and unused and unread local variables. In terms of

security smells, ChatGPTmainly provides hard-coded credentials in

the code, which is related to CWE-798: Use of Hard-coded Credentials.
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Table 1: Code quality issues in ChatGPT-generated code

Category

Total

Msgs.
# Msgs. Top-3 Message Types

638 C0114: Missing module docstring

235 C0116: Missing docstringConvention 1,146

189 C0301: Line too long

701 E0602: Undefined variable

4 E1101: No memberError 718

4 E0104: Return outside function

125 W0621: Redefined outer name

42 W0613: Unused argumentWarning 328

36 W0612: Unused variable

47 R0903: Too few public methods

27 R0801: Duplicate codeRefactor 143

16 R1705: No else return

14 B113: Request without timeout

19 B311: Pseudo-random generators

P
y
t
h
o
n

Security 84

19 B101: Assert used

87 No Javadoc for public method

11 Non-final immutable fieldAdvisory 122

8 No Javadoc for public type

Architecture 8 8 Unused Maven dependency

19 Dead method

9 Dead classDead Code 36

5 Dead field

17 Auto boxing or unboxing

17 Unused local variableViolations 42

5 Unread local variable

1 Hard-coded credential in API call

J
a
v
a

Security 2

1 Hard-coded credential in sensitive call

4.2 RQ2: Generated Code in Merged PRs

Out of the 50 analyzed PRs containing ChatGPT share links, only

6 of them (12%) contained generated code that was merged into

the repository. Out of these 6 merged codes, 3 of them were ver-

batim copies of the generated code, whereas the other 3 contained

modifications. To make the modification, developers changed the

code to make it compatible with their code base. For example, the

following code has been generated by ChatGPT, which uses Jira

rest API to check permission to create an issue.

ChatGPT-Generated code
1 if response.status_code == 200:
2 permissions = response.json().get('permissions', {})
3 create_issue_permission =
4 permissions.get('CREATE_ISSUES', {}).get('havePermission', False)

The following code, taken from a merged pull request
3
, uses the

example above and is modified for the same purpose.

Code from a merger PR
1 def can_i(self, permission: str) -> bool:
2 return bool(
3 self.jira.my_permissions(projectKey=self.project)["permissions"][
4 permission]["havePermission"]
5 )
6

7 def can_create_issues(self) -> bool:
8 return self.can_i("CREATE_ISSUES")

4.3 RQ3: ChatGPT Use Cases

After doing an open coding of PRs’ discussions and the correspond-

ing conversations with ChatGPT, we observed the following use

cases for ChatGPT:

- Libraries & Frameworks: We found that ChatGPT was used in

36% of cases to get help with the APIs for (1) standard (built-in)

Python modules/ Java packages and (2) external Python modules

3
https://github.com/app-sre/qontract-reconcile/pull/3630/files

/ Java APIs. For example, we observed conversations in which de-

velopers sought help with Python’s string manipulation methods,

datetime module, and deepcopy of objects. ChatGPT’s conversa-

tions were also used for understanding public libraries, especially

for machine and deep learning frameworks, e.g., Pytorch, Tensor-
Flow, pandas, skrub, pydantic, SparkAI etc.

- Code Formatting and Refactoring: We found 6 (15%) chats in

which developers used ChatGPT for code formatting and stan-

dardization. For example, ChatGPT provided suggestions to a

developer on how to re-structure a developer’s Python script into

multiple files and folders. In another use case, we found that de-

velopers used ChatGPT to obtain advice on how to automatically

check type hints in a Python project, to which case ChatGPT

suggested using the library mypy.

- Testing and Deploying: We found 9 chats (23%) in which Chat-

GPT provided suggestions to developers related to version con-

trolling, unit & integration testing, dependency management and

documentation. Developers also use it to obtain help for deploy-

ment frameworks like Jira.

- SDK Help: In 4 of the analyzed conversations, ChatGPT was

used to understand and troubleshoot software development kits

(SDKs). The most commonly mentioned SDKs were Nylas-SDK,

AWS SDK for Python (Boto3), and konfuzio-SDK.

- Debugging: Although ChatGPT prompts are limited to 4,000

tokens, we found 3 conversations in which developers used Chat-

GPT to debug file uploading issues, audio conversation problems,

and arbitrary code execution.

- Miscellaneous: In 8 cases, ChatGPT was also used in miscella-

neous use cases such as networking, bioinformatics-related data

manipulation, message exchange, and audio streaming.

5 DISCUSSION

Quality Issues in the Generated Code. Our findings in RQ1

demonstrated that ChatGPT-generated codes have quality issues

like not following standard coding practice, need refactoring, and

security smells. The generated codes use undefined variables and

return data outside of the functions. They are also poorly docu-

mented and keep undefined variables and arguments in the method.

ChatGPT-generated code also faced security issues like not using

timeout in resource-sensitive API calling, providing assert with-

out proper exception management, and using hardcoded creden-

tials.

Implication for the Developers. Developers are using ChatGPT
for various purposes, as our findings in RQ3. They can be used to

learn about unfamiliar libraries and development kits. Developers

make conversations about code formatting, testing, and deployment.

They also can be used for code debugging. However, our results in

RQ1 show they are not free from code and security smells. They

should be appropriately vetted before using the code base.

5.1 Threats of Validity

In our work, the dataset is used for a mining challenge, DevGPT

[42], which can introduce external threats to validity. However, the

dataset is vetted by the organizers. Our work focused on Python

and Java, two of the top-used programming languages among de-

velopers, according to a survey from Stack Overflow [23].

https://github.com/app-sre/qontract-reconcile/pull/3630/files
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Another validity threat to this work is that we used three static

analyzers (Pylint [4], Bandit [1], and CodeQL [17]) to detect code

quality issues. They can introduce false positives, but their precision

is significantly high according to the literature [25, 32]. Another

threat to this work concerns the manual evaluation of the PRs’

discussions and chats. The author’s professional software develop-

ment experience and the peer review by the other senior authors

mitigated this internal validity threat.

6 CONCLUSION AND FUTUREWORK

ChatGPT is revitalizing the software development process. Our

work shows developers use them for code formatting, debugging,

testing, and deployment. They are using it for learning new frame-

works. However, the generated code from ChatGPT can be sub-

standard and have security smells. In addition to that, they can be

merged into the software code repositories. In the future, we are

going to extend our work to other programming languages and

investigate how the developers are making conversation to reach

the solution.
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