
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

EyeLayer: Integrating Human Attention Patterns into LLM-Based
Code Summarization

Anonymous Author(s)
Abstract
Code summarization is the task of generating natural language
descriptions of source code, which is critical for software compre-
hension and maintenance. While large language models (LLMs)
have achieved remarkable progress on this task, an open question
remains: can human expertise in code understanding further guide
and enhance these models? We propose EyeLayer, a lightweight
attention-augmentation module that incorporates human eye-gaze
patterns, as a proxy of human expertise, into LLM-based code sum-
marization. EyeLayer models human attention during code reading
via a Multimodal Gaussian Mixture, redistributing token embed-
dings based on learned parameters (𝜇𝑖 , 𝜎2

𝑖
) that capture where and

how intensively developers focus. This design enables learning
generalizable attention priors from eye-tracking data and incor-
porating them into LLMs seamlessly, without disturbing existing
representations. We evaluate EyeLayer across diverse model fam-
ilies (i.e., LLaMA-3.2, Qwen3, and CodeBERT) covering different
scales and architectures. EyeLayer consistently outperforms strong
fine-tuning baselines across standard metrics, achieving gains of
up to 13.17% on BLEU-4. These results demonstrate that human
gaze patterns encode complementary attention signals that enhance
the semantic focus of LLMs and transfer effectively across diverse
models for code summarization.

Keywords
Code Summarization, Human Factors in Software Engineering,
Human-centered AI for Software Engineering

ACM Reference Format:
Anonymous Author(s). 2018. EyeLayer: Integrating Human Attention Pat-
terns into LLM-Based Code Summarization. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation email
(Conference acronym ’XX). ACM, New York, NY, USA, 12 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Software documentation is an essential bridge between code imple-
mentation and developer understanding, with code summarization
facilitating efficient program comprehension [1, 46]. As modern
software systems become increasingly complex, quickly grasping
code functionality through concise summaries is critical for main-
tenance and evolution. Consequently, automatically generating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

high-quality summaries has become a central challenge in software
engineering [24, 37].

Recent advances in large language models (LLMs) have demon-
strated remarkable capabilities in code-related tasks, particularly in
code summarization [11, 21, 46]. While these models have achieved
good performance by learning from vast corpora of code–summary
pairs, there remains a gap in generating human-aligned summaries
that capture the information humans actually focus on during
code comprehension[2, 5]. Meanwhile, when developers compre-
hend code to formulate summaries, their attention patterns re-
veal how they selectively allocate focus across different parts of
the code [24, 40]. In previous software engineering research, eye-
tracking studies have been widely used to extract developers’ at-
tention patterns which is a promising proxy for their cognitions
during programming activities [39, 41, 42]. This motivates a key
question: can incorporating human attention signals further
enhance LLM-based code summarization?

The most recent research has attempted to guide AI model devel-
opment leveraging developers’ attention patterns and demonstrated
promising benefits of such guidance. EyeTrans [55] for the first time
integrated eye-gaze signals into a single Transformer block for code
summarization, achieving up to 6.39% improvement. However, it
remains unknown whether human attention can actually enhance
modern LLMs, which differ substantially in scale, architecture, and
optimization dynamics. This uncertainty limits their potential im-
pact on real-world applications.

To bridge the gap between human and LLM attention mecha-
nisms, we propose EyeLayer, a lightweight architectural module
that integrates human eye-gaze data into LLM-based code summa-
rization. Our approach is grounded in a key insight: during code
comprehension, programmers naturally focus their attention un-
evenly across the code, concentrating intensively on semantically
critical regions while peripherally attending to contextual elements.
EyeLayer models this distributional attention as a transferable prior,
learned from a curated eye-tracking corpus of 27 professional de-
velopers [55], which captures how human gaze behavior reflects
semantic importance during real code comprehension. It employs
aMultimodal Gaussian Mixture to redistribute each code em-
bedding based on learned parameters (𝜇𝑖 , 𝜎2

𝑖
), which encode both

the intensity and spread of human attention. Integrated into the
supervised fine-tuning process, EyeLayer leverages these human-
derived priors to improve how pretrained models allocate focus
across code tokens without altering the original model architec-
ture. Despite being trained on a small but cognitively grounded
dataset, EyeLayer generalizes effectively to large-scale LLMs, show-
ing that even limited human attention data can yield measurable
improvements.

Functionally, EyeLayer serves as a recommendation system for
code embedding redistribution: for each code embedding, it predicts
a small set of Gaussian modes that recommend how its representa-
tion should be redistributed. This mechanism allows the model to

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

compose fine-grained and global focus patterns, analogous to per-
sonalized recommendation in representation space. By decoupling
gaze-informed redistribution from the model’s intrinsic attention
weights, EyeLayer learns generalizable attention priors from sparse
eye-tracking data and transfers them to unseen code. Incorporated
within LLMs, it preserves pretrained representations while infusing
human-like focus behavior directly into the attention redistribution
process.

We evaluate EyeLayer across five models spanning different
scales and architectures: CodeBERT (125M) [14], LLaMA-3.2-1B/3B-
Instruct [18], andQwen3-1.7B/4B-base [48]. All EyeLayer-augmented
models are compared against strong supervised fine-tuned baselines
trained on identical code summarization data (CodeXGLUE [22, 29])
but without eye-tracking integration, isolating the contribution of
human attention signals. Evaluation uses four widely-adopted met-
rics capturing lexical overlap (BLEU[35], ROUGE-L[27],METEOR[4])
and semantic similarity (BERTScore[52]). Across all five models,
EyeLayer achieves consistent gains over fine-tuning baselines, with
improvements up to 13.17% on BLEU-4, confirming that human
attention signals enhance LLM performance across architectures.

This paper makes the following contributions:
• We propose a framework for integrating human cognitive

priors into large language models for code summarization.
Using eye-tracking data as transferable probabilistic priors,
our approach establishes a bridge between human attention
behavior and LLM-level attention formation.

• We design theMultimodal Gaussian EyeLayer, a lightweight,
recommendation-like module that redistributes code em-
beddings through learnable Gaussian mixtures. This mecha-
nism decouples gaze-informed redistribution from intrinsic
attention weights, enabling scalable integration of sparse
human signals into billion-parameter LLMs without dis-
rupting pretrained representations.

• We conduct a systematic evaluation across five LLMs span-
ning both encoder-only and decoder-only architectures,
demonstrating consistent improvements on the CodeXGLUE
benchmark and strong transferability of learned attention
priors to unseen code.

• To facilitate reproducibility and foster future research, we
release our implementation scripts and datasets at URL.

In the rest of this paper, Section 2 presents the background of
eye-tracking in program comprehension and probabilistic attention
modeling. Section 3 introduces the design and implementation
details of the proposed EyeLayer architecture. Section 4 details
the experimental setup. Section 5 analyze the results. Section 6
discusses potential threats to validity. Section 7 provides a broader
discussion of findings and implications. Section 8 reviews related
work. Finally, Section 9 concludes the paper and outlines directions
for future research.

2 Background
Human gaze behavior offers empirical insight into how developers
comprehend code, while probabilistic attention provides a princi-
pled way to model such focus computationally. This section reviews
key findings from eye-tracking studies and links them to Gaussian-
based attention formulations that inspire our EyeLayer design.

2.1 Eye-tracking for Program Comprehension
Eye-tracking has become a rigorous method for examining cogni-
tive processes in software engineering research, particularly in un-
derstanding how developers read and comprehend source code [17,
40]. By capturing gaze behavior, eye-tracking enables the quantita-
tive analysis of attention allocation and processing effort with high
temporal precision. In software engineering, this relationship is
particularly relevant because program comprehension, like natural
language reading, involves the incremental interpretation of com-
plex visual and semantic structures [41]. Fixation-based metrics
provide a means to infer where and when developers engage in in-
formation processing, distinguishing meaningful cognitive activity
from mere visual transitions represented by saccades [39].

The theoretical basis for interpreting gaze data originates from
cognitive psychology, most notably the work of Just and Carpen-
ter [23]. Their eye–mind assumption states that the duration of a
fixation, the period of relative ocular stability directly reflects the
time required for cognitive processing. This principle established
fixations as a reliable indicator of comprehension effort in reading,
linking visual attention to linguistic and semantic processing. Em-
pirical evidence shows that fixations occupy the vast majority of
viewing time during code reading, emphasizing their role as the
fundamental unit of analysis for understanding comprehension
behavior [40, 41]. Overall, fixation analysis offers a direct and in-
terpretable connection between observable gaze patterns and the
underlying cognitive mechanisms of program understanding, mak-
ing eye-tracking a valuable empirical approach for investigating
how developers read, reason about, and make decisions based on
source code.

2.2 Probabilistic Attention and Cognitive Priors
Transformer attention can be framed probabilistically, with weights
parameterized as continuous distributions over positions. Gaussian
parameterizations offer a simple and interpretable form: a mean
for focus location and a variance for spread. Representative studies
show concrete uses of such priors. Chorowski et al. introduced
Gaussian-shaped attention for sequence-to-sequence alignment in
speech recognition [8]. Cordonnier et al. analyzed self-attention
and showed that learned patterns relate closely to Gaussian-like
kernels over relative positions [10]. You et al. further reported that
hard-coded Gaussian windows can match the performance of fully
learned attention in machine translation, indicating that Gaussian
structure can serve as an effective bias [49]. To allow multiple foci,
Graves modeled attention as a mixture of Gaussians in recurrent
architectures, capturing multi-modal alignments with learnable
centers and spreads [19].

This probabilistic view aligns with findings from eye-tracking.
Studies in software engineering report localized and selective fixa-
tions during code reading [7, 42]. Such fixation maps are commonly
summarized as peaked distributions over spatial locations. Neural
models inspired by selective vision, such as DRAW, use parame-
terized Gaussian filters to realize differentiable focus regions [20].
These results motivate representing model attention with Gaussian
or mixture forms when human-like focus is desirable.

Guided by this evidence, our EyeLayer treats attention as a learn-
able mixture with sparse mode selection. The formulation provides

2

https://zenodo.org/records/17452570?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImZhZjA1YjA5LWEzZTItNDA2My04NGE0LTJiMjQ5Mzg1OGVlMiIsImRhdGEiOnt9LCJyYW5kb20iOiJlNmQzOTZlMWE2ZmJkNmFlMjRjMmU1NTliYWZlMjc5NSJ9.35itoTvmSoTdm-NW2Eibx6E7OO50lpoFzZxBcDS2VJu3aKilXL60f4JkjVNoz7kMkTIfvSM8AD-yo9qYTrN5ng

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

an interpretable parameter space (centers, spreads, and weights)
consistent with probabilistic attention and with observed fixation
patterns in code comprehension. This connects a statistical prior on
attention with cognitively grounded signals in a single mechanism.

3 Methodology
Our training employs a carefully designed dual-dataset strategy that
separates the primary code summarization task from the auxiliary
eye-tracking alignment task, enabling learning from both large-
scale code-summary pairs and sparse but cognitively grounded
attention signals. Figure 1 provides an overview of our complete
approach.

3.1 Datasets and Preprocessing
Our training employs a carefully designed dual-dataset strategy that
separates the primary code summarization task from the auxiliary
eye-tracking alignment task, enabling learning from both large-
scale code-summary pairs and sparse but cognitively grounded
attention signals.

Code Summarization Corpus.We use the Java subset of the
CodeXGLUE benchmark [29], a widely-adopted dataset containing
Java methods paired with their corresponding docstring summaries
extracted from open-source repositories. The dataset provides di-
verse code patterns spanning different programming idioms, com-
plexity levels, and documentation styles, enabling robust learning
of the code-to-summary mapping across varied contexts.

Eye-Tracking Corpus.We derive the auxiliary alignment su-
pervision from the EyeTrans corpus [55], which records the gaze
behaviors of developers during controlled code comprehension
tasks. Each sample links a Java method to its Abstract Syntax Tree
(AST) and corresponding fixations that capture how programmers
allocate attention across syntactic and semantic regions. A fix-
ation is defined as a spatially stable gaze lasting approximately
100–300ms [40], during which most visual information process-
ing occurs [23]. Each fixation is localized on screen coordinates
and mapped to its corresponding AST node, producing discrete yet
cognitively grounded attention signals. These node-level fixation
counts are then aligned to model-level subtoken representations
through our three-stage matching pipeline described below, provid-
ing precise human-derived supervision for multimodal alignment
in the EyeLayer.

To effectively integrate these fixation-based signals into the
model, we must reconcile the representational gap between the
human gaze space and the model input space. The eye-tracking
corpus encodes attention in the AST node space, identifying which
syntactic constructs programmers focus on, whereas the multi-
modal EyeLayer operates in the subtoken space, defined by byte-
pair encoded tokens from the model tokenizer. This mismatch is
non-trivial: (1) a single AST node like BFSdistance may split into
multiple subtokens [BFS, distance], (2) tokenization varies based
on surrounding context and instruction templates, and (3) abstract
AST nodes have no direct token correspondence. We address this
through a three-stage alignment pipeline: first, we traverse the AST
to extract concrete code elements; second, we apply context-aware
tokenization matching the model’s instruction format; finally, we

use multi-strategy matching—exact matching for simple cases, con-
secutive aggregation for split tokens, and character offset estimation
for complex constructs—to map AST nodes to subtoken indices.
This pipeline achieves >98% mapping accuracy and enables us to
transfer sparse node-level fixation counts to the dense subtoken
representations required for attention supervision.

Independent Data Sources. To ensure clear supervision bound-
aries, the two datasets are kept entirely independent. The code sum-
marization corpus drives the primary generation objective, while
the eye-tracking corpus contributes auxiliary alignment supervi-
sion. They contain disjoint code samples, eliminating data leakage
and ensuring that observed improvements stem from the integra-
tion of human cognitive priors rather than exposure to additional
labeled summaries.

3.2 Multimodal Gaussian EyeLayer
Our approach builds on the key insight that, during code compre-
hension, programmers allocate attention unevenly across the code:
they concentrate intensively on semantically critical regions while
attending peripherally to contextual elements. This uneven distribu-
tion can be viewed as a composition of several focus patterns, each
representing a localized concentration of attention over the token
sequence. To model this behavior, theMultimodal Gaussian Eye-
Layer represents attention as a mixture of Gaussian components.
Each component defines a focus region characterized by a center 𝜇𝑘
(semantic locus) and spread 𝜎𝑘 (contextual extent), while a sparse
gating network determines how many such regions are needed for
each code snippet. This formulation captures both concentrated
and distributed focus within a unified probabilistic framework, al-
lowing the model to adaptively modulate attention according to
code structure and semantics.

The EyeLayer integrates into pretrained decoder-only transform-
ers (e.g., LLaMA, Qwen) through hook-based injection at an inter-
mediate layer. During forward propagation, it intercepts hidden
states H, applies the EyeLayer transformation, and returns updated
representations H′ to subsequent layers. This hook-based design
preserves the causal structure of the base model while enriching its
intermediate representations with human-aligned attention priors,
as illustrated in Figure 2.

3.2.1 Code-Level Embedding. Before predicting Gaussian param-
eters, the model first summarizes the overall semantic context of
the input sequence. For hidden states H ∈ R𝐵×𝐿×𝑑 from an inter-
mediate transformer layer, we apply an attention maskMattn and
a special-token maskMspecial to formM = Mattn ⊙ (1 −Mspecial).
When positional information is available, a decay factor 𝐷𝑝𝑖 = 𝛾𝑝𝑖
(𝛾 = 0.95) down-weights distant tokens. The code-level embedding
is computed as:

e =
∑𝐿
𝑖=1 𝑀𝑖𝐷𝑝𝑖H𝑖∑𝐿
𝑖=1 𝑀𝑖 + 𝜖

, (1)

where 𝜖 is a small constant to avoid division by zero. The resulting
vector e ∈ R𝑑 provides a compact semantic summary for mode
prediction.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 1: Overview of our joint training pipeline.

Hidden States H

Code-Level
Embedding

Sparse Gating
Network

Mode-Specific Parameter Heads

Mode 1
μ₁, σ₁

Mode 2
μ₂, σ₂

Mode 3
μ₃, σ₃

Predicted Gaussian
Redistribution

Hidden States
Redistribution H'

Figure 2: The Multimodal Gaussian EyeLayer architecture.

3.2.2 Sparse Gating Mechanism. To decide how many Gaussian
components should be activated for each code sequence, the Eye-
Layer uses a lightweight gating network that maps the code em-
bedding e to a normalized weight vector w ∈ R𝐾 :

w = softmax(W2 𝜙 (W1e + b1) + b2) , (2)

where 𝜙 (·) is a non-linear activation, and W1,W2, b1, b2 are learn-
able projection and bias parameters. The softmax normalization
ensures

∑
𝑘 𝑤

(𝑘) = 1, yielding interpretable mode activations that
indicate the relative contribution of each Gaussian component. This

gating mechanism encourages sparse activation: simple functions
tend to concentrate weight on a single mode, whereasmore complex
code distributes attention across multiple regions. Such adaptive
allocation allows the model to adjust its focus continuously without
introducing discrete decisions or additional supervision.

3.2.3 Mode-Specific Parameterization. Each active mode predicts
its Gaussian parameters based on shared semantic features ex-
tracted from the same code embedding e. The shared representation
is computed as:

hshared = Dropout(LayerNorm(GELU(Wℎe + bℎ))), (3)

where Wℎ and bℎ are learnable projection parameters. Each mode
then applies lightweight linear heads:

𝜇̃𝑘 = w(𝑘)
𝜇 hshared + 𝑏

(𝑘)
𝜇 , (4)

𝜎̃𝑘 = w(𝑘)
𝜎 hshared + 𝑏

(𝑘)
𝜎 , (5)

where 𝜇̃𝑘 and 𝜎̃𝑘 are raw predictions for the center and spread
of the 𝑘-th Gaussian component. Predictions are constrained to
𝜇𝑘 ∈ [0, 𝐿−1] and 𝜎𝑘 ∈ [𝜎min, 𝐿/2] to ensure valid ranges. Centroid
biases are initialized to cover early, middle, and late regions of the
sequence to promote spatial diversity during early training.

3.2.4 Gaussian Mixture Construction. The final attention distribu-
tion is formed as a weighted mixture of 𝐾=3 Gaussian components:

𝑃 (𝑖) =
𝐾∑︁
𝑘=1

𝑤 (𝑘)
exp

(
− (𝑖−𝜇𝑘)2

2𝜎2
𝑘

)
∑𝐿
𝑗=1 exp

(
− (𝑗−𝜇𝑘)2

2𝜎2
𝑘

) , (6)

where 𝑃 (𝑖) denotes the predicted attention probability for token po-
sition 𝑖 in a sequence of length 𝐿. Each token position corresponds to
a code token aligned with an AST node, thus representing a specific

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

syntactic or semantic unit in the source code.𝑤 (𝑘) is the normal-
ized weight of the 𝑘-th mode, and the denominator ensures each
Gaussian is properly normalized over all token positions. Smaller 𝜎𝑘
values produce sharper, concentrated peaks representing focused
reading, whereas larger 𝜎𝑘 values yield broader distributions that
capture peripheral attention. The resulting mixture 𝑃 (𝑖) forms a
smooth, interpretable, and differentiable attention distribution that
aligns with empirical human fixation patterns and supports end-
to-end optimization. The resulting distribution (P(i)) serves as the
human-aligned attention prior used in the subsequent causal-aware
redistribution stage (Section 3.3).

3.3 Causal-Aware Attention Redistribution
Integrating human-guided attention into decoder-only transform-
ers predicted by the EyeLayer requires preserving their causal au-
toregressive dependency. Unlike encoder-based models that per-
mit bidirectional attention, decoder-only architectures must main-
tain strict left-to-right information flow so that each token pre-
diction depends only on preceding context. Directly modifying
attention weights or masks would break this constraint and dis-
rupt key–value caching during generation. To address this, we im-
plement causal-aware redistribution, which injects human-aligned
guidance through residual perturbations of hidden states rather
than altering attention masks. The perturbation is shaped by the
Gaussian attention distribution predicted by the EyeLayer, enabling
soft alignment toward human-attended regions while fully preserv-
ing causality. The mechanism proceeds in three stages: (1) low-rank
transformation for compact perturbation generation, (2) attention-
guided weighting for cognitively informed modulation, and (3)
adaptive gating for dynamic integration control.

3.3.1 Low-Rank Transformation. To prevent overfitting on lim-
ited eye-tracking data, perturbations are generated through a low-
rank bottleneck. Given hidden states H ∈ R𝐵×𝐿×𝑑 from a target
transformer layer, we first down-project and then reconstruct the
representations:

Z = ReLU(HWdown), (7)
ΔHbase = ZWup, (8)

whereWdown ∈ R𝑑×𝑟 andWup ∈ R𝑟×𝑑 are learnable projections
with rank 𝑟 ≪ 𝑑 . This factorization requires only 2𝑑𝑟 parameters
instead of 𝑑2, providing a 64× reduction when 𝑟 = 16 for 𝑑 = 2048,
while retaining sufficient representational capacity.

3.3.2 Attention-Guided Weighting. The perturbation is reweighted
according to the predicted Gaussian attention distribution, empha-
sizing regions that align with human gaze. For each sample 𝑏 and
token position 𝑖 , we compute:

Δ̃H𝑏,𝑖 = 𝜆 𝑃𝑏 (𝑖) ΔHbase,𝑏,𝑖 ⊙ 𝐴𝑖 , (9)

where 𝑃𝑏 (𝑖) denotes the mixture-based attention probability at
position 𝑖 , 𝜆 is a learnable scaling coefficient, 𝐴𝑖 ∈ {0, 1} marks
valid token positions, and ⊙ represents element-wise multiplication.
Since redistribution operates on hidden representations rather than
attention masks, causal self-attention remains intact: each token

still attends only to past positions (𝑗 ≤ 𝑖), while its representa-
tion is softly modulated toward human-attended regions. Gradient
clipping is applied to ensure numerical stability.

3.3.3 Adaptive Gating and Integration. Finally, an adaptive high-
way gate controls the strength of human-guided perturbation for
each sample. A scalar gate value 𝑔𝑏 ∈ [0, 𝑔max] is computed as:

𝑔𝑏 = 𝑔max 𝜎 (MLP([h̄𝑏 ; f𝑏])), (10)
where h̄𝑏 = 1

𝐿

∑𝐿
𝑖=1 H𝑏,𝑖 is the mean-pooled hidden state (layer-

normalized before concatenation), f𝑏 encodes global statistics of
the attention distribution (e.g., entropy, maximum probability, and
in the multimodal case, mode count and weight entropy), and 𝜎 (·)
is the sigmoid activation. The MLP is initialized with a negative
bias to encourage conservative gating during early training. The
final hidden states are obtained via residual integration:

H′
𝑏,𝑖

= H𝑏,𝑖 + 𝛼 𝑔𝑏 Δ̃H𝑏,𝑖 , (11)
where 𝛼 is a global scaling constant. When 𝑔𝑏 is small, the EyeLayer
exerts minimal influence; as 𝑔𝑏 increases, stronger redistribution
occurs, enabling adaptive incorporation of human attention signals
while preserving the model’s pretrained representations.

3.4 Model Integration
TheMultimodal EyeLayer integrates with transformer architectures
through strategies that respect their information flow, as shown in
Figure 3.

Figure 3: Integration of the EyeLayer into transformer archi-
tectures for code summarization. Note that since CodeBERT
is an encoder-only model, an auxiliary decoder is attached
for sequence generation in the code summarization task.

Decoder-Only Models (LLaMA, Qwen). For autoregressive
decoder-only architectures, the EyeLayer is injected at an interme-
diate transformer layer. During forward propagation, when the base
model reaches the target layer, the hook intercepts hidden states H,
applies the EyeLayer transformation, and returns enhanced repre-
sentations H′ to subsequent layers. The predicted distribution 𝑃 (𝑖)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

guides causal-aware attention redistribution (Section 3.3), which
enforces that token 𝑖 only attends to positions 𝑗 ≤ 𝑖 and preserves
the decoder’s generation order.

Encoder-Only Models (CodeBERT). For encoder-only archi-
tectures, the EyeLayer operates after CodeBERT and before the
auxiliary decoder. CodeBERT processes the input code to produce
contextualized hidden states Henc, which are pooled to obtain a
global code embedding that drives gating and mode prediction. The
resulting 𝑃 (𝑖) modulates Henc via a non-causal low-rank perturba-
tion over token positions; causal masking is not applied because
the encoder is bidirectional. The decoder then cross-attends to the
modulated encoder representations enriched with human-aligned
attention priors.

3.5 Joint Training
After integrating the EyeLayer into the model architecture, we
jointly train the system on the primary code summarization and
auxiliary eye-tracking alignment tasks. This joint learning setup
allows the model to balance large-scale textual supervision with
sparse but cognitively grounded human signals. Formally, the over-
all objective combines a generation loss Lgen and an auxiliary
alignment loss Lalign (defined in Section 4.3.2):

Ltotal = Lgen + 𝜆align Lalign, (12)
where 𝜆align is a small weighting coefficient that ensures the align-
ment supervision acts as a regularizer rather than dominating opti-
mization.

3.5.1 Interleaved Training Schedule. Because the two datasets dif-
fer greatly in scale, with tens of thousands of code-summary pairs
and only hundreds of eye-tracking samples, we adopt an inter-
leaved training schedule to maintain stability. During each epoch,
the model primarily trains on the summarization dataset, updat-
ing parameters with Lgen at every step. Every 𝐾 steps (typically
𝐾 = 200), a batch from the eye-tracking dataset is inserted, and Eye-
Layer is optimized jointly on Ltotal with gradient conflict handling
described in Section 3.5.2. At the end of each epoch, we conduct
a dedicated alignment sweep over the entire eye-tracking dataset
while freezing the base model parameters, updating only the Eye-
Layer components. This two-phase schedule maintains consistent
exposure to the generation objective and provides sufficient gradi-
ent signal for the EyeLayer through dedicated alignment phases,
preventing the alignment objective from being overshadowed by
the main summarization task.

3.5.2 Projecting Conflicting Gradients (PCGrad). Multi-task opti-
mization often leads to conflicting gradient directions between
objectives. In our setting, the EyeLayer parameters are influenced
by both Lgen and Lalign, which may occasionally compete. To
reconcile these objectives, we employ Projecting Conflicting
Gradients (PCGrad) [50], which detects negative cosine similarity
between task gradients and removes the conflicting component
through orthogonal projection. When gradients are aligned, both
signals are preserved; when they diverge, PCGrad adjusts each
gradient to retain only the non-conflicting directions. The final pa-
rameter update uses the mean of the projected gradients, ensuring
that human-guided supervision complements rather than disrupts
the main learning objective.

4 Experimental Setup
This section details the experimental configuration used to evalu-
ate the proposed Multimodal Gaussian EyeLayer. We describe (1)
dataset construction for both code summarization and eye-tracking
supervision, (2) models and training infrastructure, and (3) eval-
uation metrics for summarization quality and human attention
alignment. These components collectively establish the framework
for answering the research questions presented in Section 5.

4.1 Datasets
Code SummarizationDataset.Weuse a subset of CodeXGLUE [29],
derived fromCodeSearchNet-Java, as the primary supervision source.
To reduce training cost while preserving data diversity, we sample
10% of the corpus, yielding 16,492 training pairs, 518 validation
pairs, and 1,095 test pairs. Each instance consists of a Java method
paired with its corresponding docstring summary extracted from
open-source repositories.

Eye-Tracking Dataset. We adopt the EyeTrans corpus [55] for
human attention supervision. The corpus involves fixation data
from 27 programmers performing code summarization tasks. Each
data point corresponds to a unique (developer, method) pair, cover-
ing 64 unique functions across diverse Java projects. We obtain 625
annotated samples with fixation sequences aligned to AST nodes.
These samples provide sparse but cognitively grounded supervision
for guiding attention redistribution.

4.2 Models and Training Infrastructure
We evaluate our Multimodal Gaussian EyeLayer across three repre-
sentative transformer architectures spanning different scales and
designs: LLaMA3.2-1B and LLaMA3.2-3B (decoder-only instruction-
tuned models), Qwen3-1.7B and Qwen3-4B (decoder-only base
model), and CodeBERT (encoder-only code model). Training and
evaluation are conducted on a single NVIDIA L40S GPU (45GB
VRAM), confirming that our approach remains computationally
efficient while effectively incorporating human attention guidance.

4.3 Evaluation Metrics
4.3.1 Code SummarizationMetrics. We evaluate generation quality
using four widely adopted metrics:

• BLEU [35]: Computes modified n-gram precision with a
brevity penalty to quantify lexical overlap with references.

• ROUGE-L [27]: Measures F1 based on the longest common
subsequence, reflecting sequence-level similarity.

• METEOR [4]: Aligns words using exact, stem, and syn-
onym matches with fragmentation penalties, emphasizing
recall and paraphrase recognition.

• BERTScore [52]: Computes contextual embedding simi-
larity to assess semantic alignment between candidate and
reference texts.

4.3.2 Attention Alignment Metrics. To align model-predicted at-
tention with human fixation patterns while preserving multimodal
diversity, we define:

Lalign = Lmatch + 𝜆sepLMSP, (13)
6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

where Lmatch aligns each Gaussian mode with fixation data, and
LMSP enforces spatial separation among active modes. The match-
ing term is computed as Lmatch =

∑𝐾
𝑘=1 𝑤̃

(𝑘) ∑
𝑡 𝜆𝑡L

(𝑘)
𝑡 , where

𝑡 ∈ {CAL, SML,CR,AUP} and 𝑤̃ (𝑘) is the normalized mode weight.
Here𝑤 (𝑘) , 𝜇𝑘 , and 𝜎𝑘 denote the weight, center, and spread of the
𝑘-th Gaussian; 𝑃𝑘 (𝑖) is its normalized probability at token position
𝑖; 𝐹 (𝑖) is the human fixation frequency; and 𝜖 is a small stability
constant.

Centroid Alignment (CAL). L (𝑘)
CAL =

√︁
(𝜇𝑘 − 𝜇human)2 + 𝜖 ,

where 𝜇human is the empirical fixation centroid. This term aligns
each predicted attention center 𝜇𝑘 with human focus regions.

Spread Matching (SML). L (𝑘)
SML =

√︃
(𝜎𝑘 − 𝜎target)2 + 𝜖 , where

𝜎target represents the observed fixation spread. It ensures eachmode
captures realistic human attention breadth.

Concentration Reward (CR). L (𝑘)
CR = 1 −

(∑
𝑖∈W 𝑃𝑘 (𝑖)

)2,
where W is a local window around attended tokens. This rewards
probability mass concentrated near human fixation areas.

Anti-UniformPenalty (AUP).L (𝑘)
AUP = max(0, 𝑐−𝐷KL (𝑈 ∥𝑃𝑘)),

where𝑈 (𝑖) = 1/𝐿 is the uniform baseline,𝐷KL is KL divergence, and
𝑐 is a small positive margin controlling the penalty strength. This
term penalizes near-uniform distributions and promotes sharper
attention focus.

Mode Separation (MSP). LMSP =
∑
𝑘1<𝑘2𝑠𝑘1𝑘2 max(0, 𝑚 −

|𝜇𝑘1 − 𝜇𝑘2 |), where 𝑠𝑘1𝑘2 = I[𝑤 (𝑘1) > 𝜏]I[𝑤 (𝑘2) > 𝜏], 𝜏 is the
activation threshold, and𝑚 is the minimum distance between ac-
tive mode centers. This term maintains spatial diversity across
Gaussian components.

5 Experimental Results and Analysis
To evaluate the proposed Multimodal Gaussian EyeLayer, we ad-
dress four research questions designed to quantify its effect on
model performance, architectural behavior, and design components.

• RQ1 – Does EyeLayer improve code summarization
quality compared to standard supervised finetuning?

• RQ2 – How does the position of the EyeLayer within
the transformer stack influence performance?

• RQ3 – How effectively does the EyeLayer generalize
to encoder-only architectures?

• RQ4 – How does EyeLayer multimodal design con-
tribute to performance?

5.1 RQ1: Effectiveness Compared to SFT
RQ1 investigates whether integrating the proposed EyeLayer im-
proves code summarization quality compared to standard super-
vised finetuning (SFT) without eye-tracking guidance. We evaluate
four representative models: instruction-tuned (Llama3.2-1B/3B) and
base (Qwen3-1.7B/4B).

As shown in Table 1, integrating EyeLayer leads to consistent
gains across all models and evaluation metrics. Improvements ap-
pear in both lexical metrics (BLEU, ROUGE, METEOR) and semantic
similarity (BERTScore), suggesting that cognitively inspired atten-
tion cues can guide the model toward more functionally meaningful
code regions. For instruction-tunedmodels (Llama3.2-instruct), Eye-
Layer yields steady gains, particularly for the 1B model (+1.8 BLEU-
4 / +1.9 METEOR). For base models(Qwen3), the improvement is

Figure 4: Example from CodeXGLUE illustrating EyeLayer’s
improvement over the baseline. Depict the inferred gaze-
inspired attention across semantically related code regions.

larger in absolute terms, particularly for Qwen3-1.7B (ROUGE-
L: +5.28, METEOR: +5.43), which indicates that models lacking
instruction-level supervision may benefit more from additional
attention prior.

The performance improvement suggests that EyeLayer subtly
guides intermediate attention toward critical code regions that
typically attract human gaze, thereby improving the quality of gen-
erated summary. The relatively larger gains observed in smaller
models imply that supervision from the eye-tracking corpus pro-
vides a more informative inductive signal when model capacity
and learned abstractions are limited. Larger models which already
develop rich internal attention patterns, exhibit smaller yet con-
sistent benefits. These observations collectively point to EyeLayer
as a light but effective cognitive guidance mechanism, offering
additional structure to models operating under supervision.

Figure 4 illustrates a representative example that demonstrates
how EyeLayer enhances the generated summary. The baseline out-
put, “Tries to create a scalar subscription for a given publisher,” cap-
tures only surface lexical cues, whereas EyeLayer produces a more
accurate behavioral description, “Subscribes to the publisher using
the mapper function as subscription handler.” Compared to the base-
line, EyeLayer places stronger focus on the method declaration
and variable declarations, which are semantically critical regions
for capturing functional intent. This pattern resonates with the
human attention dynamics reported by Karas et al. [24], where
programmers most frequently alternate their gaze between method
declarations and variable declarations during code comprehension.
The correspondence suggests that EyeLayer internalizes similar
focus tendencies without explicit gaze supervision during infer-
ence, enabling the model to generalize cognitive attention patterns
that guide summarization toward semantically informative code
regions.

RQ1 Summary. EyeLayer consistently improves summariza-
tion across all models, with larger gains in smaller or less
supervised settings, showing that lightweight cognitive cues
enhance semantic focus in code comprehension.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: Performance comparison of baseline models and models with EyeLayer integration. Values in parentheses denote
absolute improvement over the SFT baseline.

Model BLEU-4 ROUGE-L METEOR BERTScore

Llama3.2-1B 14.31 22.12 27.45 87.55
Llama3.2-1B + EyeLayer 16.18 (+1.87) 23.51 (+1.39) 29.33 (+1.88) 88.51 (+0.96)
Llama3.2-3B 15.64 24.57 29.83 88.29
Llama3.2-3B + EyeLayer 16.86 (+1.22) 25.25 (+0.68) 31.04 (+1.21) 88.72 (+0.43)

Qwen3-1.7B 13.36 21.39 26.60 86.04
Qwen3-1.7B + EyeLayer 15.12 (+1.76) 26.67 (+5.28) 32.03 (+5.43) 86.38 (+0.34)
Qwen3-4B 15.24 23.73 29.45 85.87
Qwen3-4B + EyeLayer 17.22 (+1.98) 25.30 (+1.57) 31.31 (+1.86) 86.27 (+0.40)

5.2 RQ2: Effect of EyeLayer Insertion Position

(a) BLEU-4 (b) ROUGE-L

(c) METEOR (d) BERTScore

Figure 5: Performance of Llama3.2-1B-Instruct when the Eye-
Layer is inserted at different transformer layers.

We investigate how integration depth affects performance by
inserting the EyeLayer into different transformer layers of Llama3.2-
1B-Instruct (16 layers). Figure 5 shows the different metric trends
across positions.

Two clear patterns emerge: (1) performance improves toward
deeper layers and peaks at layer13, and (2) a temporary drop appears
around layer 4. This trend aligns with the hierarchical roles of
transformer layers [32, 44]. Early layers capture lexical and syntactic
features, middle layers integrate contextual semantics, and later-
middle layers refine coherent representations for generation [13].
The degradation at layer 4 likely reflects interference with unstable
intermediate encodings, as this stage is still reorganizing shallow
features into higher-level structures [53]. At layer 13, semantic
representations are largely formed yet remain adaptable. Injecting
human attention priors here allows modulation of semantic focus
without disrupting earlier composition, enhancing alignment with
meaningful program structures [32, 44].

Overall, these results highlight that the integration of cognitive
priors depends strongly on the model’s representational stage, with

later-middle layers providing the best balance between semantic
completeness and flexibility [13, 53].

RQ2 Summary. Performance peaks at later-middle layers,
where semantic representations are mature yet flexible, indi-
cating that cognitive priors are most effective after semantic
integration but before generation.

5.3 RQ3: Generalization to Encoder-Only
Architectures

Building on the results from decoder-only models (RQ1) and the
optimal integration depth analysis (RQ2), RQ3 examines whether
EyeLayer generalizes to encoder-only architectures, which differ
fundamentally in information flow and attention dynamics. We
evaluate this transferability using CodeBERT with the encoder-
side integration strategy described in Section 3.4. The results are
summarized in Table 2.

EyeLayer maintains consistent improvements across all metrics,
despite the architectural shift from decoder-only to encoder-only
models. The largest gain appears in METEOR (+1.83), indicating
enhanced semantic alignment and paraphrase understanding, both
of which rely on holistic code comprehension. The bidirectional en-
coder benefits frommodeling human-like focus over the entire code
context without causal masking, explaining its strong performance
on semantic metrics.

These results suggest that human attention patterns encode
architecture-invariant cues of semantic importance. Regardless of
whether information is processed autoregressively or bidirection-
ally, guiding attention toward regions that typically attract human
gaze helps redistribute representational focus more effectively. The
multimodal Gaussian formulation accommodates these differences
without architectural redesign, demonstrating EyeLayer’s flexibility
and generalizability as a cognitively grounded attention module.

RQ3 Summary. EyeLayer generalizes well to encoder-only
models, confirming that human attention patterns provide
architecture-invariant cues for semantic importance and sup-
port flexible attention redistribution.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 2: CodeBERT performance with and without EyeLayer integration.

Model BLEU-4 ROUGE-L METEOR BERTScore

CodeBERT 14.35 29.16 21.87 87.69
CodeBERT + EyeLayer 15.39 (+1.04) 30.70 (+1.54) 23.70 (+1.83) 88.30 (+0.61)

5.4 RQ4: Ablation Study on Multimodal Design
RQ4 investigates whether the multimodal Gaussian design, which
models human attention through multiple distinct modes, provides
advantages over simpler single mode alternatives.

To isolate the multimodal design’s contribution, we implement
a simplified EyeLayer variant that predicts attention using a sin-
gle Gaussian distribution rather than a mixture. This architecture
removes the sparse gating network and mode-specific prediction
heads, and instead directly predicts the global centroid 𝜇 and spread
𝜎 from the code-level embedding, while retaining all other compo-
nents, including low-rank perturbation, attention-guidedweighting,
and adaptive highway gating. We evaluate single-mode EyeLayer
at early and late layer positions on Llama3.2-1B-instruct.

Table 3 shows that multimodal EyeLayer consistently outper-
forms single-mode variants across all metrics. Single-mode con-
figurations show limited improvements over baseline, with early
layer achieving minimal gains and late layer showing inconsistent
performance. In contrast, multimodal EyeLayer delivers substan-
tial improvements. For example, at layer 13, multimodal design
achieves BLEU-4: 16.18 versus single-mode’s 14.63 (+1.55), and ME-
TEOR: 29.33 versus 26.10 (+3.23), demonstrating clear advantages
of modeling multiple attention modes.

The results support our hypothesis that human attention during
code comprehension cannot be captured by a single Gaussian. A
single-mode design can only represent one attention region, which
forces a trade-off between narrow focus (small 𝜎) and broad cov-
erage (large 𝜎), and thus fails to model multiple distinct areas of
interest in complex functions. In contrast, the multimodal design
enables sparse mode selection, where the gating network activates
1–3 modes adaptively based on code complexity. This allows the
model to compose multiple attention patterns, such as scanning
function signatures, following control flow, and inspecting imple-
mentation details. The substantial performance gains indicate that
modeling diverse attention modes improves cognitive fidelity and
justifies the added architectural complexity.

RQ4 Summary. Multimodal Gaussian design outperforms
single-mode variants, demonstrating that modeling multiple
attention modes better captures human gaze diversity and
yields stronger semantic alignment.

6 Threats to Validity
There are two main threats to the validity of our work. First, our
eye-tracking supervision derives exclusively from Java code compre-
hension, which may limit generalization to languages with different
syntactic structures or paradigms. However, core code comprehen-
sion strategies are similar across languages. This implies that human
attention patterns reflecting semantic importance may also transfer,

but further validation is needed for EyeLayer across diverse pro-
gramming languages. Second, our evaluation relies on automatic
metrics that may not fully correlate with human-perceived sum-
mary quality or practical developer productivity in real-world sce-
narios. We mitigate this threat by employing four complementary
metrics (BLEU, ROUGE-L, METEOR, BERTScore) spanning lexical
overlap and semantic similarity dimensions, validating across di-
verse model architectures (decoder-only and encoder-only), and
conducting qualitative analysis demonstrating meaningful seman-
tic improvements in generated summaries. All experiments used
fixed random seeds to ensure reproducibility and minimize bias.

7 Discussion and Future Work
Scaling Eye-Tracking Supervision. Our results show that 625
sparse eye-tracking samples provide consistent benefits, suggesting
that scaling supervision through data augmentation or large-scale
collection could further improve performance. Richer supervision
would enable more expressive EyeLayer architectures capturing
finer-grained attention patterns.

Richer Cognitive Signals. Our approach uses only static fixa-
tion—aggregated attention intensity. Eye-tracking can contain addi-
tional information: saccade patterns (revealing information-seeking
strategies), and attention switches (capturing dynamic shifts in cog-
nitive focus). Incorporating these temporal and sequential signals
has the potential to provide richer supervision.

Generalization to Software Engineering Tasks. While we
focus on code summarization, many SE tasks fundamentally involve
code comprehension: bug localization, code review, and program
repair all require identifying semantically important regions. Hu-
man attention patterns should transfer across tasks as developers
employ similar cognitive strategies regardless of end goal. Eye-
Layer’s effectiveness across both decoder-only and encoder-only
architectures demonstrates its flexibility for integration into diverse
models. However, future work should investigate whether atten-
tion patterns from code summarization tasks can transfer to other
SE contexts, or whether collecting task-specific eye-tracking data
yields stronger supervision signals.

Broader Implications. Beyond performance improvements,
EyeLayer demonstrates grounding neural models in human cog-
nitive processes rather than purely data-driven learning. This ap-
proach could enable more interpretable AI systems where models
attend to code for reasons aligned with human reasoning, facilitat-
ing developer trust and effective human-AI collaboration as code
intelligence tools become ubiquitous in development workflows.

8 Related Work
This section situates ourwork at the intersection of human-centered
AI and automatic code summarization. We first review research that

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 3: Ablation study comparing single-mode and multimodal EyeLayer designs on Llama3.2-1B.

Configuration BLEU-4 ROUGE-L METEOR BERTScore

Baseline (SFT) 14.31 22.12 27.45 87.55
Single-mode (Early) 14.30 21.64 27.55 88.13
Single-mode (Late) 14.63 20.82 26.10 88.26
Multimodal (Late) 16.18 23.51 29.33 88.51

integrates cognitive and behavioral signals into software engineer-
ing models, emphasizing eye-tracking as a bridge between human
and machine attention. We then discuss advances in code sum-
marization, from transformer-based architectures to recent efforts
incorporating human-like attention guidance.

8.1 Human-centered AI for Software
Engineering

Human-centered AI for software engineering (SE) emphasizes align-
ing automated systems with human cognition and developer work-
flows. Empirical studies have shown that developers interact with
AI assistants in complex ways: they often exhibit overconfidence
while producing less secure code [36], alternate between accelera-
tion and exploration modes depending on task certainty [6], and
face persistent challenges in output validation and trust calibra-
tion [15, 26, 30]. Recent theoretical frameworks further characterize
trust as a dynamic and multi-dimensional construct [9, 38], under-
scoring the need for models that are cognitively transparent and
behaviorally adaptive.

Beyond behavioral analysis, recent research has sought to di-
rectly model cognitive processes underlying code comprehension.
Early eye-tracking studies revealed that developer gaze patterns
reflect semantic understanding during program reading [34, 37].
Building on this foundation, Bansal et al. [5] and Alakmeh et al. [2]
predicted human attention from code structure and integrated gaze
information to enhance summarization models. More recently, Eye-
Trans [55] and EyeMulator [54] incorporated gaze data into Trans-
former architectures, achieving measurable performance gains.

EyeLayer extends this research direction by being among the first
to incorporate human cognitive signals into large language models.
It leverages human attention as a transferable probabilistic prior,
aiming for generalizable integration of human-like focus patterns
across model architectures and tasks.

8.2 Automatic Code Summarization
The advent of large language models (LLMs) has catalyzed a para-
digm shift in automatic code summarization, transitioning from tra-
ditional sequence-to-sequence architectures to transformer-based
approaches that leverage extensive pre-training on code corpora.
Early work such as Code2Seq [3] and retrieval-augmented meth-
ods [51] demonstrated that structural program representations and
example-based retrieval can significantly enhance summary qual-
ity. The establishment of benchmarks like CodeXGLUE [28] stan-
dardized evaluation protocols and enabled systematic comparison
across models and datasets. Building on these foundations, Shi et
al. [43] identified key factors influencing neural summarization
performance, while Gao et al. [16] and Fang et al. [12] explored

in-context and prompt-based learning to adapt general-purpose
LLMs for code summarization. Empirical studies further revealed
that moderately sized, fine-tuned models can rival or surpass much
larger general-purpose LLMs when supervision effectively captures
task semantics [46], emphasizing the centrality of the fine-tuning
process in code-oriented adaptation.

Recent work has focused on improving efficiency, robustness,
and interpretability in LLM-based summarization [46]. Su et al. [45]
applied knowledge distillation to reduce computational costs, while
Mastropaolo et al. [31] proposed semantic-aware evaluation metrics
to better assess summary fidelity. Virk et al. [47] exposed calibration
deficiencies that undermine model reliability, and Mondal et al. [33]
examined robustness to adversarial perturbations. Interpretability
analyses further uncovered a persistent misalignment between
model-generated attention and developer comprehension: Li et
al. [25] showed that neural attention often diverges from code
regions developers focus on, leading to summaries that are lexically
fluent but semantically incomplete. This gap between surface-level
correlations and true comprehension has motivated recent studies
to augment fine-tuning with auxiliary behavioral cues such as eye-
tracking, exemplified by EyeTrans [55], which guide transformer
attention toward semantically salient regions.

EyeLayer continues this trajectory by strengthening the super-
vised fine-tuning of LLM-based summarization. Rather than re-
designing model architectures or relying on heavy supervision, it
introduces lightweight cognitive priors into the fine-tuning pipeline
to steer attention toward functionally important code regions.

9 Conclusion
This work demonstrates that human cognitive patterns captured
through eye-tracking can effectively enhance LLM-based code
summarization. We introduced EyeLayer, a lightweight attention-
augmentation module that integrates sparse human attention sig-
nals into LLMs through Multimodal Gaussian Mixture Models, en-
abling models to learn how developers naturally focus on semanti-
cally critical code regions during comprehension. Our evaluation
across fivemodels spanning different scales and architectures shows
consistent improvements, validating that human expertise provides
complementary signals that enhance LLM capabilities beyond what
standard supervised fine-tuning achieves. Our methodology estab-
lishes a framework for incorporating human cognitive processes
into LLMs for code comprehension, contributing to the develop-
ment of more capable and interpretable developer tools as software
systems continue to grow in complexity.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

References
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics (ACL).

[2] Tarek Alakmeh, David Reich, Lena Jäger, and Thomas Fritz. 2024. Predicting
Code Comprehension: A Novel Approach to Align Human Gaze with Code Using
Deep Neural Networks. Proceedings of the ACM on Software Engineering 1, FSE
(July 2024), 1982–2004. doi:10.1145/3660795

[3] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. arXiv:1808.01400 [cs.LG]
https://arxiv.org/abs/1808.01400

[4] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. In Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, Jade Goldstein, Alon Lavie, Chin-Yew Lin,
and Clare Voss (Eds.). Association for Computational Linguistics, Ann Arbor,
Michigan, 65–72.

[5] Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards Modeling
Human Attention from Eye Movements for Neural Source Code Summarization.
Proceedings of the ACM on Human-Computer Interaction 7, ETRA (May 2023),
1–19. doi:10.1145/3591136

[6] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-Generating Models. doi:10.
48550/arXiv.2206.15000

[7] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pa-
terson, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Move-
ments in Code Reading: Relaxing the Linear Order. In 2015 IEEE 23rd Inter-
national Conference on Program Comprehension. IEEE, Florence, Italy, 255–265.
doi:10.1109/ICPC.2015.36

[8] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. 2015. Attention-Based Models for Speech Recognition. In Ad-
vances in Neural Information Processing Systems, Vol. 28. Curran Associates, Inc.

[9] Rudrajit Choudhuri, Bianca Trinkenreich, Rahul Pandita, Eirini Kalliamvakou,
Igor Steinmacher, Marco Gerosa, Christopher Sanchez, and Anita Sarma. 2024.
What Guides Our Choices? Modeling Developers’ Trust and Behavioral Inten-
tions towards GenAI. doi:10.48550/arXiv.2409.04099

[10] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. 2019. On the
Relationship between Self-Attention and Convolutional Layers. In International
Conference on Learning Representations.

[11] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engi-
neering: Survey and Open Problems. In 2023 IEEE/ACM International Confer-
ence on Software Engineering: Future of Software Engineering (ICSE-FoSE). 31–53.
doi:10.1109/ICSE-FoSE59343.2023.00008

[12] Minying Fang, Xing Yuan, Yuying Li, Haojie Li, Chunrong Fang, and Junwei
Du. 2025. Enhanced Prompting Framework for Code Summarization with Large
Language Models. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA072 (June 2025),
24 pages. doi:10.1145/3728949

[13] Harshwardhan Fartale, Ashish Kattamuri, Rahul Raja, Arpita Vats, Ishita Prasad,
and Akshata Kishore Moharir. 2025. Disentangling Recall and Reasoning in
Transformer Models through Layer-Wise Attention and Activation Analysis.
doi:10.48550/arXiv.2510.03366

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages.

[15] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, Jiaxin Yu, and
Jinfu Chen. 2025. Security Weaknesses of Copilot-Generated Code in GitHub
Projects: An Empirical Study. doi:10.48550/arXiv.2310.02059

[16] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
andMichael R. Lyu. 2023. WhatMakes Good In-Context Demonstrations for Code
Intelligence Tasks with LLMs?. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 761–773. doi:10.1109/ase56229.
2023.00109

[17] Lisa Grabinger, Florian Hauser, Christian Wolff, and Jürgen Mottok. 2024. On
Eye Tracking in Software Engineering. SN Computer Science 5, 6 (July 2024), 729.
doi:10.1007/s42979-024-03045-3

[18] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, and et al. 2024.
The Llama 3 Herd of Models. doi:10.48550/arXiv.2407.21783

[19] Alex Graves. 2014. Generating Sequences With Recurrent Neural Networks.
doi:10.48550/arXiv.1308.0850

[20] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. 2015. DRAW: A Recurrent Neural Network For Image Generation.
doi:10.48550/arXiv.1502.04623

[21] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for
Software Engineering: A Systematic Literature Review. arXiv:2308.10620 [cs.SE]

https://arxiv.org/abs/2308.10620
[22] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[23] Marcel Adam Just and Patricia A Carpenter. [n. d.]. A Theory of Reading: From
Eye Fixations to Comprehension. ([n. d.]).

[24] Zachary Karas, Aakash Bansal, Yifan Zhang, Toby Li, Collin McMillan, and Yu
Huang. 2024. A Tale of Two Comprehensions? Analyzing Student Programmer
Attention during Code Summarization. ACM Trans. Softw. Eng. Methodol. 33, 7,
Article 193 (Aug. 2024), 37 pages. doi:10.1145/3664808

[25] Jiliang Li, Yifan Zhang, Zachary Karas, Collin McMillan, Kevin Leach, and Yu
Huang. 2024. Do Machines and Humans Focus on Similar Code? Exploring Ex-
plainability of Large Language Models in Code Summarization. In Proceedings of
the 32nd IEEE/ACM International Conference on Program Comprehension (Lisbon,
Portugal) (ICPC ’24). Association for Computing Machinery, New York, NY, USA,
47–51. doi:10.1145/3643916.3644434

[26] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2023. A Large-Scale Survey
on the Usability of AI Programming Assistants: Successes and Challenges. doi:10.
48550/arXiv.2303.17125

[27] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81.

[28] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, DawnDrain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao KunDeng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
(2021). arXiv:2102.04664 [cs.SE] https://arxiv.org/abs/2102.04664

[29] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

[30] Yunbo Lyu, Zhou Yang, Jieke Shi, Jianming Chang, Yue Liu, and David Lo. 2025.
"my Productivity Is Boosted, but ..." Demystifying Users’ Perception on AI Coding
Assistants. doi:10.48550/arXiv.2508.12285

[31] Antonio Mastropaolo, Matteo Ciniselli, Massimiliano Di Penta, and Gabriele
Bavota. 2024. Evaluating Code Summarization Techniques: A New Metric and
an Empirical Characterization. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for
Computing Machinery, New York, NY, USA, Article 218, 13 pages. doi:10.1145/
3597503.3639174

[32] Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2025. Talking Heads: Un-
derstanding Inter-Layer Communication in Transformer Language Models.
doi:10.48550/arXiv.2406.09519

[33] Debanjan Mondal, Abhilasha Lodha, Ankita Sahoo, and Beena Kumari. 2023. Ro-
bust Code Summarization. In Proceedings of the 1st GenBenchWorkshop on (Bench-
marking) Generalisation in NLP, Dieuwke Hupkes, Verna Dankers, Khuyagbaatar
Batsuren, Koustuv Sinha, Amirhossein Kazemnejad, Christos Christodoulopou-
los, Ryan Cotterell, and Elia Bruni (Eds.). Association for Computational Linguis-
tics, Singapore, 65–75. doi:10.18653/v1/2023.genbench-1.5

[34] Matteo Paltenghi and Michael Pradel. 2021. Thinking like a Developer? Com-
paring the Attention of Humans with Neural Models of Code. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, Melbourne, Australia, 867–879. doi:10.1109/ase51524.2021.9678712

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Pierre
Isabelle, Eugene Charniak, and Dekang Lin (Eds.). Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 311–318. doi:10.3115/1073083.
1073135

[36] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do Users
Write More Insecure Code with AI Assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. ACM, Copen-
hagen Denmark, 2785–2799. doi:10.1145/3576915.3623157

[37] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sid-
ney D’Mello. 2014. Improving Automated Source Code Summarization via
an Eye-Tracking Study of Programmers. In Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM, Hyderabad India, 390–401.
doi:10.1145/2568225.2568247

[38] Sadra Sabouri, Philipp Eibl, Xinyi Zhou, Morteza Ziyadi, Nenad Medvidovic,
Lars Lindemann, and Souti Chattopadhyay. 2025. Trust Dynamics in AI-assisted
Development: Definitions, Factors, and Implications. In 2025 IEEE/ACM 47th In-
ternational Conference on Software Engineering (ICSE). IEEE, Ottawa, ON, Canada,
1678–1690. doi:10.1109/ICSE55347.2025.00199

[39] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. 2015.
Eye-Tracking Metrics in Software Engineering. In 2015 Asia-Pacific Software

11

https://doi.org/10.1145/3660795
https://arxiv.org/abs/1808.01400
https://arxiv.org/abs/1808.01400
https://doi.org/10.1145/3591136
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.48550/arXiv.2409.04099
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1145/3728949
https://doi.org/10.48550/arXiv.2510.03366
https://doi.org/10.48550/arXiv.2310.02059
https://doi.org/10.1109/ase56229.2023.00109
https://doi.org/10.1109/ase56229.2023.00109
https://doi.org/10.1007/s42979-024-03045-3
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1502.04623
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://doi.org/10.1145/3664808
https://doi.org/10.1145/3643916.3644434
https://doi.org/10.48550/arXiv.2303.17125
https://doi.org/10.48550/arXiv.2303.17125
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://doi.org/10.48550/arXiv.2508.12285
https://doi.org/10.1145/3597503.3639174
https://doi.org/10.1145/3597503.3639174
https://doi.org/10.48550/arXiv.2406.09519
https://doi.org/10.18653/v1/2023.genbench-1.5
https://doi.org/10.1109/ase51524.2021.9678712
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1109/ICSE55347.2025.00199

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Engineering Conference (APSEC). 96–103. doi:10.1109/APSEC.2015.53
[40] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman

Bednarik, and Martha Crosby. 2020. A Practical Guide on Conducting Eye
Tracking Studies in Software Engineering. Empirical Software Engineering 25, 5
(Sept. 2020), 3128–3174. doi:10.1007/s10664-020-09829-4

[41] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A Systematic
Literature Review on the Usage of Eye-Tracking in Software Engineering. In-
formation and Software Technology 67 (Nov. 2015), 79–107. doi:10.1016/j.infsof.
2015.06.008

[42] Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and Under_score Identifier Styles. In 2010 IEEE 18th International Conference on
Program Comprehension. 196–205. doi:10.1109/ICPC.2010.41

[43] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-
mei Zhang, and Hongbin Sun. 2022. On the evaluation of neural code summariza-
tion. In Proceedings of the 44th International Conference on Software Engineering.
ACM, 1597–1608. doi:10.1145/3510003.3510060

[44] Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun,
and Ravid Shwartz-Ziv. 2025. Layer by Layer: Uncovering Hidden Representa-
tions in Language Models. doi:10.48550/arXiv.2502.02013

[45] Chia-Yi Su and Collin McMillan. 2024. Distilled GPT for source code summariza-
tion. Automated Software Engg. 31, 1 (March 2024), 26 pages. doi:10.1007/s10515-
024-00421-4

[46] Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, Chunrong Fang, Yi Liu,
Gelei Deng, Yang Liu, and Zhenyu Chen. 2025. Source Code Summarization in
the Era of Large Language Models. arXiv:2407.07959 [cs.SE] https://arxiv.org/
abs/2407.07959

[47] Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed. 2025. Calibration of
Large Language Models on Code Summarization. Proc. ACM Softw. Eng. 2, FSE,
Article FSE130 (June 2025), 21 pages. doi:10.1145/3729400

[48] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, and et al. 2025. Qwen3 Technical Report. doi:10.48550/arXiv.2505.

09388
[49] Weiqiu You, Simeng Sun, and Mohit Iyyer. 2020. Hard-Coded Gaussian Attention

for Neural Machine Translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7689–7700. doi:10.18653/v1/2020.acl-main.687

[50] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. 2020. Gradient Surgery for Multi-Task Learning. doi:10.48550/
arXiv.2001.06782

[51] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
1385–1397. doi:10.1145/3377811.3380383

[52] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
2020. BERTScore: Evaluating Text Generation with BERT. doi:10.48550/arXiv.
1904.09675

[53] Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. 2024. Investigating Layer
Importance in Large Language Models. In Proceedings of the 7th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Networks for NLP. Association for
Computational Linguistics, Miami, Florida, US, 469–479. doi:10.18653/v1/2024.
blackboxnlp-1.29

[54] Yifan Zhang, Chen Huang, Yueke Zhang, Jiahao Zhang, Toby Jia-Jun Li, Collin
McMillan, Kevin Leach, and Yu Huang. 2025. EyeMulator: Improving Code
Language Models by Mimicking Human Visual Attention. doi:10.48550/arXiv.
2508.16771

[55] Yifan Zhang, Jiliang Li, Zachary Karas, Aakash Bansal, Toby Jia-Jun Li, Collin
McMillan, Kevin Leach, and Yu Huang. 2024. EyeTrans: Merging Human and
Machine Attention for Neural Code Summarization. Proceedings of the ACM on
Software Engineering 1, FSE (July 2024), 115–136. doi:10.1145/3643732

12

https://doi.org/10.1109/APSEC.2015.53
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.48550/arXiv.2502.02013
https://doi.org/10.1007/s10515-024-00421-4
https://doi.org/10.1007/s10515-024-00421-4
https://arxiv.org/abs/2407.07959
https://arxiv.org/abs/2407.07959
https://arxiv.org/abs/2407.07959
https://doi.org/10.1145/3729400
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.18653/v1/2020.acl-main.687
https://doi.org/10.48550/arXiv.2001.06782
https://doi.org/10.48550/arXiv.2001.06782
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://doi.org/10.48550/arXiv.2508.16771
https://doi.org/10.48550/arXiv.2508.16771
https://doi.org/10.1145/3643732

	Abstract
	1 Introduction
	2 Background
	2.1 Eye-tracking for Program Comprehension
	2.2 Probabilistic Attention and Cognitive Priors

	3 Methodology
	3.1 Datasets and Preprocessing
	3.2 Multimodal Gaussian EyeLayer
	3.3 Causal-Aware Attention Redistribution
	3.4 Model Integration
	3.5 Joint Training

	4 Experimental Setup
	4.1 Datasets
	4.2 Models and Training Infrastructure
	4.3 Evaluation Metrics

	5 Experimental Results and Analysis
	5.1 RQ1: Effectiveness Compared to SFT
	5.2 RQ2: Effect of EyeLayer Insertion Position
	5.3 RQ3: Generalization to Encoder-Only Architectures
	5.4 RQ4: Ablation Study on Multimodal Design

	6 Threats to Validity
	7 Discussion and Future Work
	8 Related Work
	8.1 Human-centered AI for Software Engineering
	8.2 Automatic Code Summarization

	9 Conclusion
	References

