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EyeLayer: Integrating Human Attention Patterns into LLM-Based
Code Summarization

Anonymous Author(s)
Abstract
Code summarization is the task of generating natural language
descriptions of source code, which is critical for software compre-
hension and maintenance. While large language models (LLMs)
have achieved remarkable progress on this task, an open question
remains: can human expertise in code understanding further guide
and enhance these models? We propose EyeLayer, a lightweight
attention-augmentation module that incorporates human eye-gaze
patterns, as a proxy of human expertise, into LLM-based code sum-
marization. EyeLayer models human attention during code reading
via a Multimodal Gaussian Mixture, redistributing token embed-
dings based on learned parameters (𝜇𝑖 , 𝜎2

𝑖
) that capture where and

how intensively developers focus. This design enables learning
generalizable attention priors from eye-tracking data and incor-
porating them into LLMs seamlessly, without disturbing existing
representations. We evaluate EyeLayer across diverse model fam-
ilies (i.e., LLaMA-3.2, Qwen3, and CodeBERT) covering different
scales and architectures. EyeLayer consistently outperforms strong
fine-tuning baselines across standard metrics, achieving gains of
up to 13.17% on BLEU-4. These results demonstrate that human
gaze patterns encode complementary attention signals that enhance
the semantic focus of LLMs and transfer effectively across diverse
models for code summarization.

Keywords
Code Summarization, Human Factors in Software Engineering,
Human-centered AI for Software Engineering
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1 Introduction
Software documentation is an essential bridge between code imple-
mentation and developer understanding, with code summarization
facilitating efficient program comprehension [1, 46]. As modern
software systems become increasingly complex, quickly grasping
code functionality through concise summaries is critical for main-
tenance and evolution. Consequently, automatically generating
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high-quality summaries has become a central challenge in software
engineering [24, 37].

Recent advances in large language models (LLMs) have demon-
strated remarkable capabilities in code-related tasks, particularly in
code summarization [11, 21, 46]. While these models have achieved
good performance by learning from vast corpora of code–summary
pairs, there remains a gap in generating human-aligned summaries
that capture the information humans actually focus on during
code comprehension[2, 5]. Meanwhile, when developers compre-
hend code to formulate summaries, their attention patterns re-
veal how they selectively allocate focus across different parts of
the code [24, 40]. In previous software engineering research, eye-
tracking studies have been widely used to extract developers’ at-
tention patterns which is a promising proxy for their cognitions
during programming activities [39, 41, 42]. This motivates a key
question: can incorporating human attention signals further
enhance LLM-based code summarization?

The most recent research has attempted to guide AI model devel-
opment leveraging developers’ attention patterns and demonstrated
promising benefits of such guidance. EyeTrans [55] for the first time
integrated eye-gaze signals into a single Transformer block for code
summarization, achieving up to 6.39% improvement. However, it
remains unknown whether human attention can actually enhance
modern LLMs, which differ substantially in scale, architecture, and
optimization dynamics. This uncertainty limits their potential im-
pact on real-world applications.

To bridge the gap between human and LLM attention mecha-
nisms, we propose EyeLayer, a lightweight architectural module
that integrates human eye-gaze data into LLM-based code summa-
rization. Our approach is grounded in a key insight: during code
comprehension, programmers naturally focus their attention un-
evenly across the code, concentrating intensively on semantically
critical regions while peripherally attending to contextual elements.
EyeLayer models this distributional attention as a transferable prior,
learned from a curated eye-tracking corpus of 27 professional de-
velopers [55], which captures how human gaze behavior reflects
semantic importance during real code comprehension. It employs
aMultimodal Gaussian Mixture to redistribute each code em-
bedding based on learned parameters (𝜇𝑖 , 𝜎2

𝑖
), which encode both

the intensity and spread of human attention. Integrated into the
supervised fine-tuning process, EyeLayer leverages these human-
derived priors to improve how pretrained models allocate focus
across code tokens without altering the original model architec-
ture. Despite being trained on a small but cognitively grounded
dataset, EyeLayer generalizes effectively to large-scale LLMs, show-
ing that even limited human attention data can yield measurable
improvements.

Functionally, EyeLayer serves as a recommendation system for
code embedding redistribution: for each code embedding, it predicts
a small set of Gaussian modes that recommend how its representa-
tion should be redistributed. This mechanism allows the model to

1
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compose fine-grained and global focus patterns, analogous to per-
sonalized recommendation in representation space. By decoupling
gaze-informed redistribution from the model’s intrinsic attention
weights, EyeLayer learns generalizable attention priors from sparse
eye-tracking data and transfers them to unseen code. Incorporated
within LLMs, it preserves pretrained representations while infusing
human-like focus behavior directly into the attention redistribution
process.

We evaluate EyeLayer across five models spanning different
scales and architectures: CodeBERT (125M) [14], LLaMA-3.2-1B/3B-
Instruct [18], andQwen3-1.7B/4B-base [48]. All EyeLayer-augmented
models are compared against strong supervised fine-tuned baselines
trained on identical code summarization data (CodeXGLUE [22, 29])
but without eye-tracking integration, isolating the contribution of
human attention signals. Evaluation uses four widely-adopted met-
rics capturing lexical overlap (BLEU[35], ROUGE-L[27],METEOR[4])
and semantic similarity (BERTScore[52]). Across all five models,
EyeLayer achieves consistent gains over fine-tuning baselines, with
improvements up to 13.17% on BLEU-4, confirming that human
attention signals enhance LLM performance across architectures.

This paper makes the following contributions:
• We propose a framework for integrating human cognitive

priors into large language models for code summarization.
Using eye-tracking data as transferable probabilistic priors,
our approach establishes a bridge between human attention
behavior and LLM-level attention formation.

• We design theMultimodal Gaussian EyeLayer, a lightweight,
recommendation-like module that redistributes code em-
beddings through learnable Gaussian mixtures. This mecha-
nism decouples gaze-informed redistribution from intrinsic
attention weights, enabling scalable integration of sparse
human signals into billion-parameter LLMs without dis-
rupting pretrained representations.

• We conduct a systematic evaluation across five LLMs span-
ning both encoder-only and decoder-only architectures,
demonstrating consistent improvements on the CodeXGLUE
benchmark and strong transferability of learned attention
priors to unseen code.

• To facilitate reproducibility and foster future research, we
release our implementation scripts and datasets at URL.

In the rest of this paper, Section 2 presents the background of
eye-tracking in program comprehension and probabilistic attention
modeling. Section 3 introduces the design and implementation
details of the proposed EyeLayer architecture. Section 4 details
the experimental setup. Section 5 analyze the results. Section 6
discusses potential threats to validity. Section 7 provides a broader
discussion of findings and implications. Section 8 reviews related
work. Finally, Section 9 concludes the paper and outlines directions
for future research.

2 Background
Human gaze behavior offers empirical insight into how developers
comprehend code, while probabilistic attention provides a princi-
pled way to model such focus computationally. This section reviews
key findings from eye-tracking studies and links them to Gaussian-
based attention formulations that inspire our EyeLayer design.

2.1 Eye-tracking for Program Comprehension
Eye-tracking has become a rigorous method for examining cogni-
tive processes in software engineering research, particularly in un-
derstanding how developers read and comprehend source code [17,
40]. By capturing gaze behavior, eye-tracking enables the quantita-
tive analysis of attention allocation and processing effort with high
temporal precision. In software engineering, this relationship is
particularly relevant because program comprehension, like natural
language reading, involves the incremental interpretation of com-
plex visual and semantic structures [41]. Fixation-based metrics
provide a means to infer where and when developers engage in in-
formation processing, distinguishing meaningful cognitive activity
from mere visual transitions represented by saccades [39].

The theoretical basis for interpreting gaze data originates from
cognitive psychology, most notably the work of Just and Carpen-
ter [23]. Their eye–mind assumption states that the duration of a
fixation, the period of relative ocular stability directly reflects the
time required for cognitive processing. This principle established
fixations as a reliable indicator of comprehension effort in reading,
linking visual attention to linguistic and semantic processing. Em-
pirical evidence shows that fixations occupy the vast majority of
viewing time during code reading, emphasizing their role as the
fundamental unit of analysis for understanding comprehension
behavior [40, 41]. Overall, fixation analysis offers a direct and in-
terpretable connection between observable gaze patterns and the
underlying cognitive mechanisms of program understanding, mak-
ing eye-tracking a valuable empirical approach for investigating
how developers read, reason about, and make decisions based on
source code.

2.2 Probabilistic Attention and Cognitive Priors
Transformer attention can be framed probabilistically, with weights
parameterized as continuous distributions over positions. Gaussian
parameterizations offer a simple and interpretable form: a mean
for focus location and a variance for spread. Representative studies
show concrete uses of such priors. Chorowski et al. introduced
Gaussian-shaped attention for sequence-to-sequence alignment in
speech recognition [8]. Cordonnier et al. analyzed self-attention
and showed that learned patterns relate closely to Gaussian-like
kernels over relative positions [10]. You et al. further reported that
hard-coded Gaussian windows can match the performance of fully
learned attention in machine translation, indicating that Gaussian
structure can serve as an effective bias [49]. To allow multiple foci,
Graves modeled attention as a mixture of Gaussians in recurrent
architectures, capturing multi-modal alignments with learnable
centers and spreads [19].

This probabilistic view aligns with findings from eye-tracking.
Studies in software engineering report localized and selective fixa-
tions during code reading [7, 42]. Such fixation maps are commonly
summarized as peaked distributions over spatial locations. Neural
models inspired by selective vision, such as DRAW, use parame-
terized Gaussian filters to realize differentiable focus regions [20].
These results motivate representing model attention with Gaussian
or mixture forms when human-like focus is desirable.

Guided by this evidence, our EyeLayer treats attention as a learn-
able mixture with sparse mode selection. The formulation provides
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an interpretable parameter space (centers, spreads, and weights)
consistent with probabilistic attention and with observed fixation
patterns in code comprehension. This connects a statistical prior on
attention with cognitively grounded signals in a single mechanism.

3 Methodology
Our training employs a carefully designed dual-dataset strategy that
separates the primary code summarization task from the auxiliary
eye-tracking alignment task, enabling learning from both large-
scale code-summary pairs and sparse but cognitively grounded
attention signals. Figure 1 provides an overview of our complete
approach.

3.1 Datasets and Preprocessing
Our training employs a carefully designed dual-dataset strategy that
separates the primary code summarization task from the auxiliary
eye-tracking alignment task, enabling learning from both large-
scale code-summary pairs and sparse but cognitively grounded
attention signals.

Code Summarization Corpus.We use the Java subset of the
CodeXGLUE benchmark [29], a widely-adopted dataset containing
Java methods paired with their corresponding docstring summaries
extracted from open-source repositories. The dataset provides di-
verse code patterns spanning different programming idioms, com-
plexity levels, and documentation styles, enabling robust learning
of the code-to-summary mapping across varied contexts.

Eye-Tracking Corpus.We derive the auxiliary alignment su-
pervision from the EyeTrans corpus [55], which records the gaze
behaviors of developers during controlled code comprehension
tasks. Each sample links a Java method to its Abstract Syntax Tree
(AST) and corresponding fixations that capture how programmers
allocate attention across syntactic and semantic regions. A fix-
ation is defined as a spatially stable gaze lasting approximately
100–300ms [40], during which most visual information process-
ing occurs [23]. Each fixation is localized on screen coordinates
and mapped to its corresponding AST node, producing discrete yet
cognitively grounded attention signals. These node-level fixation
counts are then aligned to model-level subtoken representations
through our three-stage matching pipeline described below, provid-
ing precise human-derived supervision for multimodal alignment
in the EyeLayer.

To effectively integrate these fixation-based signals into the
model, we must reconcile the representational gap between the
human gaze space and the model input space. The eye-tracking
corpus encodes attention in the AST node space, identifying which
syntactic constructs programmers focus on, whereas the multi-
modal EyeLayer operates in the subtoken space, defined by byte-
pair encoded tokens from the model tokenizer. This mismatch is
non-trivial: (1) a single AST node like BFSdistance may split into
multiple subtokens [BFS, distance], (2) tokenization varies based
on surrounding context and instruction templates, and (3) abstract
AST nodes have no direct token correspondence. We address this
through a three-stage alignment pipeline: first, we traverse the AST
to extract concrete code elements; second, we apply context-aware
tokenization matching the model’s instruction format; finally, we

use multi-strategy matching—exact matching for simple cases, con-
secutive aggregation for split tokens, and character offset estimation
for complex constructs—to map AST nodes to subtoken indices.
This pipeline achieves >98% mapping accuracy and enables us to
transfer sparse node-level fixation counts to the dense subtoken
representations required for attention supervision.

Independent Data Sources. To ensure clear supervision bound-
aries, the two datasets are kept entirely independent. The code sum-
marization corpus drives the primary generation objective, while
the eye-tracking corpus contributes auxiliary alignment supervi-
sion. They contain disjoint code samples, eliminating data leakage
and ensuring that observed improvements stem from the integra-
tion of human cognitive priors rather than exposure to additional
labeled summaries.

3.2 Multimodal Gaussian EyeLayer
Our approach builds on the key insight that, during code compre-
hension, programmers allocate attention unevenly across the code:
they concentrate intensively on semantically critical regions while
attending peripherally to contextual elements. This uneven distribu-
tion can be viewed as a composition of several focus patterns, each
representing a localized concentration of attention over the token
sequence. To model this behavior, theMultimodal Gaussian Eye-
Layer represents attention as a mixture of Gaussian components.
Each component defines a focus region characterized by a center 𝜇𝑘
(semantic locus) and spread 𝜎𝑘 (contextual extent), while a sparse
gating network determines how many such regions are needed for
each code snippet. This formulation captures both concentrated
and distributed focus within a unified probabilistic framework, al-
lowing the model to adaptively modulate attention according to
code structure and semantics.

The EyeLayer integrates into pretrained decoder-only transform-
ers (e.g., LLaMA, Qwen) through hook-based injection at an inter-
mediate layer. During forward propagation, it intercepts hidden
states H, applies the EyeLayer transformation, and returns updated
representations H′ to subsequent layers. This hook-based design
preserves the causal structure of the base model while enriching its
intermediate representations with human-aligned attention priors,
as illustrated in Figure 2.

3.2.1 Code-Level Embedding. Before predicting Gaussian param-
eters, the model first summarizes the overall semantic context of
the input sequence. For hidden states H ∈ R𝐵×𝐿×𝑑 from an inter-
mediate transformer layer, we apply an attention maskMattn and
a special-token maskMspecial to formM = Mattn ⊙ (1 −Mspecial).
When positional information is available, a decay factor 𝐷𝑝𝑖 = 𝛾𝑝𝑖
(𝛾 = 0.95) down-weights distant tokens. The code-level embedding
is computed as:

e =
∑𝐿
𝑖=1 𝑀𝑖𝐷𝑝𝑖H𝑖∑𝐿
𝑖=1 𝑀𝑖 + 𝜖

, (1)

where 𝜖 is a small constant to avoid division by zero. The resulting
vector e ∈ R𝑑 provides a compact semantic summary for mode
prediction.

3
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Figure 1: Overview of our joint training pipeline.

Hidden States H

Code-Level
Embedding

Sparse Gating
Network

Mode-Specific Parameter Heads

Mode 1
μ₁, σ₁

Mode 2
μ₂, σ₂

Mode 3
μ₃, σ₃

Predicted Gaussian
Redistribution

Hidden States
Redistribution H'

Figure 2: The Multimodal Gaussian EyeLayer architecture.

3.2.2 Sparse Gating Mechanism. To decide how many Gaussian
components should be activated for each code sequence, the Eye-
Layer uses a lightweight gating network that maps the code em-
bedding e to a normalized weight vector w ∈ R𝐾 :

w = softmax(W2 𝜙 (W1e + b1) + b2) , (2)

where 𝜙 (·) is a non-linear activation, and W1,W2, b1, b2 are learn-
able projection and bias parameters. The softmax normalization
ensures

∑
𝑘 𝑤

(𝑘 ) = 1, yielding interpretable mode activations that
indicate the relative contribution of each Gaussian component. This

gating mechanism encourages sparse activation: simple functions
tend to concentrate weight on a single mode, whereasmore complex
code distributes attention across multiple regions. Such adaptive
allocation allows the model to adjust its focus continuously without
introducing discrete decisions or additional supervision.

3.2.3 Mode-Specific Parameterization. Each active mode predicts
its Gaussian parameters based on shared semantic features ex-
tracted from the same code embedding e. The shared representation
is computed as:

hshared = Dropout(LayerNorm(GELU(Wℎe + bℎ))), (3)

where Wℎ and bℎ are learnable projection parameters. Each mode
then applies lightweight linear heads:

𝜇̃𝑘 = w(𝑘 )
𝜇 hshared + 𝑏

(𝑘 )
𝜇 , (4)

𝜎̃𝑘 = w(𝑘 )
𝜎 hshared + 𝑏

(𝑘 )
𝜎 , (5)

where 𝜇̃𝑘 and 𝜎̃𝑘 are raw predictions for the center and spread
of the 𝑘-th Gaussian component. Predictions are constrained to
𝜇𝑘 ∈ [0, 𝐿−1] and 𝜎𝑘 ∈ [𝜎min, 𝐿/2] to ensure valid ranges. Centroid
biases are initialized to cover early, middle, and late regions of the
sequence to promote spatial diversity during early training.

3.2.4 Gaussian Mixture Construction. The final attention distribu-
tion is formed as a weighted mixture of 𝐾=3 Gaussian components:

𝑃 (𝑖) =
𝐾∑︁
𝑘=1

𝑤 (𝑘 )
exp

(
− (𝑖−𝜇𝑘 )2

2𝜎2
𝑘

)
∑𝐿
𝑗=1 exp

(
− ( 𝑗−𝜇𝑘 )2

2𝜎2
𝑘

) , (6)

where 𝑃 (𝑖) denotes the predicted attention probability for token po-
sition 𝑖 in a sequence of length 𝐿. Each token position corresponds to
a code token aligned with an AST node, thus representing a specific

4
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syntactic or semantic unit in the source code.𝑤 (𝑘 ) is the normal-
ized weight of the 𝑘-th mode, and the denominator ensures each
Gaussian is properly normalized over all token positions. Smaller 𝜎𝑘
values produce sharper, concentrated peaks representing focused
reading, whereas larger 𝜎𝑘 values yield broader distributions that
capture peripheral attention. The resulting mixture 𝑃 (𝑖) forms a
smooth, interpretable, and differentiable attention distribution that
aligns with empirical human fixation patterns and supports end-
to-end optimization. The resulting distribution (P(i)) serves as the
human-aligned attention prior used in the subsequent causal-aware
redistribution stage (Section 3.3).

3.3 Causal-Aware Attention Redistribution
Integrating human-guided attention into decoder-only transform-
ers predicted by the EyeLayer requires preserving their causal au-
toregressive dependency. Unlike encoder-based models that per-
mit bidirectional attention, decoder-only architectures must main-
tain strict left-to-right information flow so that each token pre-
diction depends only on preceding context. Directly modifying
attention weights or masks would break this constraint and dis-
rupt key–value caching during generation. To address this, we im-
plement causal-aware redistribution, which injects human-aligned
guidance through residual perturbations of hidden states rather
than altering attention masks. The perturbation is shaped by the
Gaussian attention distribution predicted by the EyeLayer, enabling
soft alignment toward human-attended regions while fully preserv-
ing causality. The mechanism proceeds in three stages: (1) low-rank
transformation for compact perturbation generation, (2) attention-
guided weighting for cognitively informed modulation, and (3)
adaptive gating for dynamic integration control.

3.3.1 Low-Rank Transformation. To prevent overfitting on lim-
ited eye-tracking data, perturbations are generated through a low-
rank bottleneck. Given hidden states H ∈ R𝐵×𝐿×𝑑 from a target
transformer layer, we first down-project and then reconstruct the
representations:

Z = ReLU(HWdown), (7)
ΔHbase = ZWup, (8)

whereWdown ∈ R𝑑×𝑟 andWup ∈ R𝑟×𝑑 are learnable projections
with rank 𝑟 ≪ 𝑑 . This factorization requires only 2𝑑𝑟 parameters
instead of 𝑑2, providing a 64× reduction when 𝑟 = 16 for 𝑑 = 2048,
while retaining sufficient representational capacity.

3.3.2 Attention-Guided Weighting. The perturbation is reweighted
according to the predicted Gaussian attention distribution, empha-
sizing regions that align with human gaze. For each sample 𝑏 and
token position 𝑖 , we compute:

Δ̃H𝑏,𝑖 = 𝜆 𝑃𝑏 (𝑖) ΔHbase,𝑏,𝑖 ⊙ 𝐴𝑖 , (9)

where 𝑃𝑏 (𝑖) denotes the mixture-based attention probability at
position 𝑖 , 𝜆 is a learnable scaling coefficient, 𝐴𝑖 ∈ {0, 1} marks
valid token positions, and ⊙ represents element-wise multiplication.
Since redistribution operates on hidden representations rather than
attention masks, causal self-attention remains intact: each token

still attends only to past positions ( 𝑗 ≤ 𝑖), while its representa-
tion is softly modulated toward human-attended regions. Gradient
clipping is applied to ensure numerical stability.

3.3.3 Adaptive Gating and Integration. Finally, an adaptive high-
way gate controls the strength of human-guided perturbation for
each sample. A scalar gate value 𝑔𝑏 ∈ [0, 𝑔max] is computed as:

𝑔𝑏 = 𝑔max 𝜎 (MLP( [h̄𝑏 ; f𝑏 ])), (10)
where h̄𝑏 = 1

𝐿

∑𝐿
𝑖=1 H𝑏,𝑖 is the mean-pooled hidden state (layer-

normalized before concatenation), f𝑏 encodes global statistics of
the attention distribution (e.g., entropy, maximum probability, and
in the multimodal case, mode count and weight entropy), and 𝜎 (·)
is the sigmoid activation. The MLP is initialized with a negative
bias to encourage conservative gating during early training. The
final hidden states are obtained via residual integration:

H′
𝑏,𝑖

= H𝑏,𝑖 + 𝛼 𝑔𝑏 Δ̃H𝑏,𝑖 , (11)
where 𝛼 is a global scaling constant. When 𝑔𝑏 is small, the EyeLayer
exerts minimal influence; as 𝑔𝑏 increases, stronger redistribution
occurs, enabling adaptive incorporation of human attention signals
while preserving the model’s pretrained representations.

3.4 Model Integration
TheMultimodal EyeLayer integrates with transformer architectures
through strategies that respect their information flow, as shown in
Figure 3.

Figure 3: Integration of the EyeLayer into transformer archi-
tectures for code summarization. Note that since CodeBERT
is an encoder-only model, an auxiliary decoder is attached
for sequence generation in the code summarization task.

Decoder-Only Models (LLaMA, Qwen). For autoregressive
decoder-only architectures, the EyeLayer is injected at an interme-
diate transformer layer. During forward propagation, when the base
model reaches the target layer, the hook intercepts hidden states H,
applies the EyeLayer transformation, and returns enhanced repre-
sentations H′ to subsequent layers. The predicted distribution 𝑃 (𝑖)
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guides causal-aware attention redistribution (Section 3.3), which
enforces that token 𝑖 only attends to positions 𝑗 ≤ 𝑖 and preserves
the decoder’s generation order.

Encoder-Only Models (CodeBERT). For encoder-only archi-
tectures, the EyeLayer operates after CodeBERT and before the
auxiliary decoder. CodeBERT processes the input code to produce
contextualized hidden states Henc, which are pooled to obtain a
global code embedding that drives gating and mode prediction. The
resulting 𝑃 (𝑖) modulates Henc via a non-causal low-rank perturba-
tion over token positions; causal masking is not applied because
the encoder is bidirectional. The decoder then cross-attends to the
modulated encoder representations enriched with human-aligned
attention priors.

3.5 Joint Training
After integrating the EyeLayer into the model architecture, we
jointly train the system on the primary code summarization and
auxiliary eye-tracking alignment tasks. This joint learning setup
allows the model to balance large-scale textual supervision with
sparse but cognitively grounded human signals. Formally, the over-
all objective combines a generation loss Lgen and an auxiliary
alignment loss Lalign (defined in Section 4.3.2):

Ltotal = Lgen + 𝜆align Lalign, (12)
where 𝜆align is a small weighting coefficient that ensures the align-
ment supervision acts as a regularizer rather than dominating opti-
mization.

3.5.1 Interleaved Training Schedule. Because the two datasets dif-
fer greatly in scale, with tens of thousands of code-summary pairs
and only hundreds of eye-tracking samples, we adopt an inter-
leaved training schedule to maintain stability. During each epoch,
the model primarily trains on the summarization dataset, updat-
ing parameters with Lgen at every step. Every 𝐾 steps (typically
𝐾 = 200), a batch from the eye-tracking dataset is inserted, and Eye-
Layer is optimized jointly on Ltotal with gradient conflict handling
described in Section 3.5.2. At the end of each epoch, we conduct
a dedicated alignment sweep over the entire eye-tracking dataset
while freezing the base model parameters, updating only the Eye-
Layer components. This two-phase schedule maintains consistent
exposure to the generation objective and provides sufficient gradi-
ent signal for the EyeLayer through dedicated alignment phases,
preventing the alignment objective from being overshadowed by
the main summarization task.

3.5.2 Projecting Conflicting Gradients (PCGrad). Multi-task opti-
mization often leads to conflicting gradient directions between
objectives. In our setting, the EyeLayer parameters are influenced
by both Lgen and Lalign, which may occasionally compete. To
reconcile these objectives, we employ Projecting Conflicting
Gradients (PCGrad) [50], which detects negative cosine similarity
between task gradients and removes the conflicting component
through orthogonal projection. When gradients are aligned, both
signals are preserved; when they diverge, PCGrad adjusts each
gradient to retain only the non-conflicting directions. The final pa-
rameter update uses the mean of the projected gradients, ensuring
that human-guided supervision complements rather than disrupts
the main learning objective.

4 Experimental Setup
This section details the experimental configuration used to evalu-
ate the proposed Multimodal Gaussian EyeLayer. We describe (1)
dataset construction for both code summarization and eye-tracking
supervision, (2) models and training infrastructure, and (3) eval-
uation metrics for summarization quality and human attention
alignment. These components collectively establish the framework
for answering the research questions presented in Section 5.

4.1 Datasets
Code SummarizationDataset.Weuse a subset of CodeXGLUE [29],
derived fromCodeSearchNet-Java, as the primary supervision source.
To reduce training cost while preserving data diversity, we sample
10% of the corpus, yielding 16,492 training pairs, 518 validation
pairs, and 1,095 test pairs. Each instance consists of a Java method
paired with its corresponding docstring summary extracted from
open-source repositories.

Eye-Tracking Dataset. We adopt the EyeTrans corpus [55] for
human attention supervision. The corpus involves fixation data
from 27 programmers performing code summarization tasks. Each
data point corresponds to a unique (developer, method) pair, cover-
ing 64 unique functions across diverse Java projects. We obtain 625
annotated samples with fixation sequences aligned to AST nodes.
These samples provide sparse but cognitively grounded supervision
for guiding attention redistribution.

4.2 Models and Training Infrastructure
We evaluate our Multimodal Gaussian EyeLayer across three repre-
sentative transformer architectures spanning different scales and
designs: LLaMA3.2-1B and LLaMA3.2-3B (decoder-only instruction-
tuned models), Qwen3-1.7B and Qwen3-4B (decoder-only base
model), and CodeBERT (encoder-only code model). Training and
evaluation are conducted on a single NVIDIA L40S GPU (45GB
VRAM), confirming that our approach remains computationally
efficient while effectively incorporating human attention guidance.

4.3 Evaluation Metrics
4.3.1 Code SummarizationMetrics. We evaluate generation quality
using four widely adopted metrics:

• BLEU [35]: Computes modified n-gram precision with a
brevity penalty to quantify lexical overlap with references.

• ROUGE-L [27]: Measures F1 based on the longest common
subsequence, reflecting sequence-level similarity.

• METEOR [4]: Aligns words using exact, stem, and syn-
onym matches with fragmentation penalties, emphasizing
recall and paraphrase recognition.

• BERTScore [52]: Computes contextual embedding simi-
larity to assess semantic alignment between candidate and
reference texts.

4.3.2 Attention Alignment Metrics. To align model-predicted at-
tention with human fixation patterns while preserving multimodal
diversity, we define:

Lalign = Lmatch + 𝜆sepLMSP, (13)
6
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where Lmatch aligns each Gaussian mode with fixation data, and
LMSP enforces spatial separation among active modes. The match-
ing term is computed as Lmatch =

∑𝐾
𝑘=1 𝑤̃

(𝑘 ) ∑
𝑡 𝜆𝑡L

(𝑘 )
𝑡 , where

𝑡 ∈ {CAL, SML,CR,AUP} and 𝑤̃ (𝑘 ) is the normalized mode weight.
Here𝑤 (𝑘 ) , 𝜇𝑘 , and 𝜎𝑘 denote the weight, center, and spread of the
𝑘-th Gaussian; 𝑃𝑘 (𝑖) is its normalized probability at token position
𝑖; 𝐹 (𝑖) is the human fixation frequency; and 𝜖 is a small stability
constant.

Centroid Alignment (CAL). L (𝑘 )
CAL =

√︁
(𝜇𝑘 − 𝜇human)2 + 𝜖 ,

where 𝜇human is the empirical fixation centroid. This term aligns
each predicted attention center 𝜇𝑘 with human focus regions.

Spread Matching (SML). L (𝑘 )
SML =

√︃
(𝜎𝑘 − 𝜎target)2 + 𝜖 , where

𝜎target represents the observed fixation spread. It ensures eachmode
captures realistic human attention breadth.

Concentration Reward (CR). L (𝑘 )
CR = 1 −

( ∑
𝑖∈W 𝑃𝑘 (𝑖)

)2,
where W is a local window around attended tokens. This rewards
probability mass concentrated near human fixation areas.

Anti-UniformPenalty (AUP).L (𝑘 )
AUP = max(0, 𝑐−𝐷KL (𝑈 ∥𝑃𝑘 )),

where𝑈 (𝑖) = 1/𝐿 is the uniform baseline,𝐷KL is KL divergence, and
𝑐 is a small positive margin controlling the penalty strength. This
term penalizes near-uniform distributions and promotes sharper
attention focus.

Mode Separation (MSP). LMSP =
∑
𝑘1<𝑘2𝑠𝑘1𝑘2 max(0, 𝑚 −

|𝜇𝑘1 − 𝜇𝑘2 |), where 𝑠𝑘1𝑘2 = I[𝑤 (𝑘1 ) > 𝜏]I[𝑤 (𝑘2 ) > 𝜏], 𝜏 is the
activation threshold, and𝑚 is the minimum distance between ac-
tive mode centers. This term maintains spatial diversity across
Gaussian components.

5 Experimental Results and Analysis
To evaluate the proposed Multimodal Gaussian EyeLayer, we ad-
dress four research questions designed to quantify its effect on
model performance, architectural behavior, and design components.

• RQ1 – Does EyeLayer improve code summarization
quality compared to standard supervised finetuning?

• RQ2 – How does the position of the EyeLayer within
the transformer stack influence performance?

• RQ3 – How effectively does the EyeLayer generalize
to encoder-only architectures?

• RQ4 – How does EyeLayer multimodal design con-
tribute to performance?

5.1 RQ1: Effectiveness Compared to SFT
RQ1 investigates whether integrating the proposed EyeLayer im-
proves code summarization quality compared to standard super-
vised finetuning (SFT) without eye-tracking guidance. We evaluate
four representative models: instruction-tuned (Llama3.2-1B/3B) and
base (Qwen3-1.7B/4B).

As shown in Table 1, integrating EyeLayer leads to consistent
gains across all models and evaluation metrics. Improvements ap-
pear in both lexical metrics (BLEU, ROUGE, METEOR) and semantic
similarity (BERTScore), suggesting that cognitively inspired atten-
tion cues can guide the model toward more functionally meaningful
code regions. For instruction-tunedmodels (Llama3.2-instruct), Eye-
Layer yields steady gains, particularly for the 1B model (+1.8 BLEU-
4 / +1.9 METEOR). For base models(Qwen3), the improvement is

Figure 4: Example from CodeXGLUE illustrating EyeLayer’s
improvement over the baseline. Depict the inferred gaze-
inspired attention across semantically related code regions.

larger in absolute terms, particularly for Qwen3-1.7B (ROUGE-
L: +5.28, METEOR: +5.43), which indicates that models lacking
instruction-level supervision may benefit more from additional
attention prior.

The performance improvement suggests that EyeLayer subtly
guides intermediate attention toward critical code regions that
typically attract human gaze, thereby improving the quality of gen-
erated summary. The relatively larger gains observed in smaller
models imply that supervision from the eye-tracking corpus pro-
vides a more informative inductive signal when model capacity
and learned abstractions are limited. Larger models which already
develop rich internal attention patterns, exhibit smaller yet con-
sistent benefits. These observations collectively point to EyeLayer
as a light but effective cognitive guidance mechanism, offering
additional structure to models operating under supervision.

Figure 4 illustrates a representative example that demonstrates
how EyeLayer enhances the generated summary. The baseline out-
put, “Tries to create a scalar subscription for a given publisher,” cap-
tures only surface lexical cues, whereas EyeLayer produces a more
accurate behavioral description, “Subscribes to the publisher using
the mapper function as subscription handler.” Compared to the base-
line, EyeLayer places stronger focus on the method declaration
and variable declarations, which are semantically critical regions
for capturing functional intent. This pattern resonates with the
human attention dynamics reported by Karas et al. [24], where
programmers most frequently alternate their gaze between method
declarations and variable declarations during code comprehension.
The correspondence suggests that EyeLayer internalizes similar
focus tendencies without explicit gaze supervision during infer-
ence, enabling the model to generalize cognitive attention patterns
that guide summarization toward semantically informative code
regions.

RQ1 Summary. EyeLayer consistently improves summariza-
tion across all models, with larger gains in smaller or less
supervised settings, showing that lightweight cognitive cues
enhance semantic focus in code comprehension.
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Table 1: Performance comparison of baseline models and models with EyeLayer integration. Values in parentheses denote
absolute improvement over the SFT baseline.

Model BLEU-4 ROUGE-L METEOR BERTScore

Llama3.2-1B 14.31 22.12 27.45 87.55
Llama3.2-1B + EyeLayer 16.18 (+1.87) 23.51 (+1.39) 29.33 (+1.88) 88.51 (+0.96)
Llama3.2-3B 15.64 24.57 29.83 88.29
Llama3.2-3B + EyeLayer 16.86 (+1.22) 25.25 (+0.68) 31.04 (+1.21) 88.72 (+0.43)

Qwen3-1.7B 13.36 21.39 26.60 86.04
Qwen3-1.7B + EyeLayer 15.12 (+1.76) 26.67 (+5.28) 32.03 (+5.43) 86.38 (+0.34)
Qwen3-4B 15.24 23.73 29.45 85.87
Qwen3-4B + EyeLayer 17.22 (+1.98) 25.30 (+1.57) 31.31 (+1.86) 86.27 (+0.40)

5.2 RQ2: Effect of EyeLayer Insertion Position

(a) BLEU-4 (b) ROUGE-L

(c) METEOR (d) BERTScore

Figure 5: Performance of Llama3.2-1B-Instruct when the Eye-
Layer is inserted at different transformer layers.

We investigate how integration depth affects performance by
inserting the EyeLayer into different transformer layers of Llama3.2-
1B-Instruct (16 layers). Figure 5 shows the different metric trends
across positions.

Two clear patterns emerge: (1) performance improves toward
deeper layers and peaks at layer13, and (2) a temporary drop appears
around layer 4. This trend aligns with the hierarchical roles of
transformer layers [32, 44]. Early layers capture lexical and syntactic
features, middle layers integrate contextual semantics, and later-
middle layers refine coherent representations for generation [13].
The degradation at layer 4 likely reflects interference with unstable
intermediate encodings, as this stage is still reorganizing shallow
features into higher-level structures [53]. At layer 13, semantic
representations are largely formed yet remain adaptable. Injecting
human attention priors here allows modulation of semantic focus
without disrupting earlier composition, enhancing alignment with
meaningful program structures [32, 44].

Overall, these results highlight that the integration of cognitive
priors depends strongly on the model’s representational stage, with

later-middle layers providing the best balance between semantic
completeness and flexibility [13, 53].

RQ2 Summary. Performance peaks at later-middle layers,
where semantic representations are mature yet flexible, indi-
cating that cognitive priors are most effective after semantic
integration but before generation.

5.3 RQ3: Generalization to Encoder-Only
Architectures

Building on the results from decoder-only models (RQ1) and the
optimal integration depth analysis (RQ2), RQ3 examines whether
EyeLayer generalizes to encoder-only architectures, which differ
fundamentally in information flow and attention dynamics. We
evaluate this transferability using CodeBERT with the encoder-
side integration strategy described in Section 3.4. The results are
summarized in Table 2.

EyeLayer maintains consistent improvements across all metrics,
despite the architectural shift from decoder-only to encoder-only
models. The largest gain appears in METEOR (+1.83), indicating
enhanced semantic alignment and paraphrase understanding, both
of which rely on holistic code comprehension. The bidirectional en-
coder benefits frommodeling human-like focus over the entire code
context without causal masking, explaining its strong performance
on semantic metrics.

These results suggest that human attention patterns encode
architecture-invariant cues of semantic importance. Regardless of
whether information is processed autoregressively or bidirection-
ally, guiding attention toward regions that typically attract human
gaze helps redistribute representational focus more effectively. The
multimodal Gaussian formulation accommodates these differences
without architectural redesign, demonstrating EyeLayer’s flexibility
and generalizability as a cognitively grounded attention module.

RQ3 Summary. EyeLayer generalizes well to encoder-only
models, confirming that human attention patterns provide
architecture-invariant cues for semantic importance and sup-
port flexible attention redistribution.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 2: CodeBERT performance with and without EyeLayer integration.

Model BLEU-4 ROUGE-L METEOR BERTScore

CodeBERT 14.35 29.16 21.87 87.69
CodeBERT + EyeLayer 15.39 (+1.04) 30.70 (+1.54) 23.70 (+1.83) 88.30 (+0.61)

5.4 RQ4: Ablation Study on Multimodal Design
RQ4 investigates whether the multimodal Gaussian design, which
models human attention through multiple distinct modes, provides
advantages over simpler single mode alternatives.

To isolate the multimodal design’s contribution, we implement
a simplified EyeLayer variant that predicts attention using a sin-
gle Gaussian distribution rather than a mixture. This architecture
removes the sparse gating network and mode-specific prediction
heads, and instead directly predicts the global centroid 𝜇 and spread
𝜎 from the code-level embedding, while retaining all other compo-
nents, including low-rank perturbation, attention-guidedweighting,
and adaptive highway gating. We evaluate single-mode EyeLayer
at early and late layer positions on Llama3.2-1B-instruct.

Table 3 shows that multimodal EyeLayer consistently outper-
forms single-mode variants across all metrics. Single-mode con-
figurations show limited improvements over baseline, with early
layer achieving minimal gains and late layer showing inconsistent
performance. In contrast, multimodal EyeLayer delivers substan-
tial improvements. For example, at layer 13, multimodal design
achieves BLEU-4: 16.18 versus single-mode’s 14.63 (+1.55), and ME-
TEOR: 29.33 versus 26.10 (+3.23), demonstrating clear advantages
of modeling multiple attention modes.

The results support our hypothesis that human attention during
code comprehension cannot be captured by a single Gaussian. A
single-mode design can only represent one attention region, which
forces a trade-off between narrow focus (small 𝜎) and broad cov-
erage (large 𝜎), and thus fails to model multiple distinct areas of
interest in complex functions. In contrast, the multimodal design
enables sparse mode selection, where the gating network activates
1–3 modes adaptively based on code complexity. This allows the
model to compose multiple attention patterns, such as scanning
function signatures, following control flow, and inspecting imple-
mentation details. The substantial performance gains indicate that
modeling diverse attention modes improves cognitive fidelity and
justifies the added architectural complexity.

RQ4 Summary. Multimodal Gaussian design outperforms
single-mode variants, demonstrating that modeling multiple
attention modes better captures human gaze diversity and
yields stronger semantic alignment.

6 Threats to Validity
There are two main threats to the validity of our work. First, our
eye-tracking supervision derives exclusively from Java code compre-
hension, which may limit generalization to languages with different
syntactic structures or paradigms. However, core code comprehen-
sion strategies are similar across languages. This implies that human
attention patterns reflecting semantic importance may also transfer,

but further validation is needed for EyeLayer across diverse pro-
gramming languages. Second, our evaluation relies on automatic
metrics that may not fully correlate with human-perceived sum-
mary quality or practical developer productivity in real-world sce-
narios. We mitigate this threat by employing four complementary
metrics (BLEU, ROUGE-L, METEOR, BERTScore) spanning lexical
overlap and semantic similarity dimensions, validating across di-
verse model architectures (decoder-only and encoder-only), and
conducting qualitative analysis demonstrating meaningful seman-
tic improvements in generated summaries. All experiments used
fixed random seeds to ensure reproducibility and minimize bias.

7 Discussion and Future Work
Scaling Eye-Tracking Supervision. Our results show that 625
sparse eye-tracking samples provide consistent benefits, suggesting
that scaling supervision through data augmentation or large-scale
collection could further improve performance. Richer supervision
would enable more expressive EyeLayer architectures capturing
finer-grained attention patterns.

Richer Cognitive Signals. Our approach uses only static fixa-
tion—aggregated attention intensity. Eye-tracking can contain addi-
tional information: saccade patterns (revealing information-seeking
strategies), and attention switches (capturing dynamic shifts in cog-
nitive focus). Incorporating these temporal and sequential signals
has the potential to provide richer supervision.

Generalization to Software Engineering Tasks. While we
focus on code summarization, many SE tasks fundamentally involve
code comprehension: bug localization, code review, and program
repair all require identifying semantically important regions. Hu-
man attention patterns should transfer across tasks as developers
employ similar cognitive strategies regardless of end goal. Eye-
Layer’s effectiveness across both decoder-only and encoder-only
architectures demonstrates its flexibility for integration into diverse
models. However, future work should investigate whether atten-
tion patterns from code summarization tasks can transfer to other
SE contexts, or whether collecting task-specific eye-tracking data
yields stronger supervision signals.

Broader Implications. Beyond performance improvements,
EyeLayer demonstrates grounding neural models in human cog-
nitive processes rather than purely data-driven learning. This ap-
proach could enable more interpretable AI systems where models
attend to code for reasons aligned with human reasoning, facilitat-
ing developer trust and effective human-AI collaboration as code
intelligence tools become ubiquitous in development workflows.

8 Related Work
This section situates ourwork at the intersection of human-centered
AI and automatic code summarization. We first review research that

9
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Table 3: Ablation study comparing single-mode and multimodal EyeLayer designs on Llama3.2-1B.

Configuration BLEU-4 ROUGE-L METEOR BERTScore

Baseline (SFT) 14.31 22.12 27.45 87.55
Single-mode (Early) 14.30 21.64 27.55 88.13
Single-mode (Late) 14.63 20.82 26.10 88.26
Multimodal (Late) 16.18 23.51 29.33 88.51

integrates cognitive and behavioral signals into software engineer-
ing models, emphasizing eye-tracking as a bridge between human
and machine attention. We then discuss advances in code sum-
marization, from transformer-based architectures to recent efforts
incorporating human-like attention guidance.

8.1 Human-centered AI for Software
Engineering

Human-centered AI for software engineering (SE) emphasizes align-
ing automated systems with human cognition and developer work-
flows. Empirical studies have shown that developers interact with
AI assistants in complex ways: they often exhibit overconfidence
while producing less secure code [36], alternate between accelera-
tion and exploration modes depending on task certainty [6], and
face persistent challenges in output validation and trust calibra-
tion [15, 26, 30]. Recent theoretical frameworks further characterize
trust as a dynamic and multi-dimensional construct [9, 38], under-
scoring the need for models that are cognitively transparent and
behaviorally adaptive.

Beyond behavioral analysis, recent research has sought to di-
rectly model cognitive processes underlying code comprehension.
Early eye-tracking studies revealed that developer gaze patterns
reflect semantic understanding during program reading [34, 37].
Building on this foundation, Bansal et al. [5] and Alakmeh et al. [2]
predicted human attention from code structure and integrated gaze
information to enhance summarization models. More recently, Eye-
Trans [55] and EyeMulator [54] incorporated gaze data into Trans-
former architectures, achieving measurable performance gains.

EyeLayer extends this research direction by being among the first
to incorporate human cognitive signals into large language models.
It leverages human attention as a transferable probabilistic prior,
aiming for generalizable integration of human-like focus patterns
across model architectures and tasks.

8.2 Automatic Code Summarization
The advent of large language models (LLMs) has catalyzed a para-
digm shift in automatic code summarization, transitioning from tra-
ditional sequence-to-sequence architectures to transformer-based
approaches that leverage extensive pre-training on code corpora.
Early work such as Code2Seq [3] and retrieval-augmented meth-
ods [51] demonstrated that structural program representations and
example-based retrieval can significantly enhance summary qual-
ity. The establishment of benchmarks like CodeXGLUE [28] stan-
dardized evaluation protocols and enabled systematic comparison
across models and datasets. Building on these foundations, Shi et
al. [43] identified key factors influencing neural summarization
performance, while Gao et al. [16] and Fang et al. [12] explored

in-context and prompt-based learning to adapt general-purpose
LLMs for code summarization. Empirical studies further revealed
that moderately sized, fine-tuned models can rival or surpass much
larger general-purpose LLMs when supervision effectively captures
task semantics [46], emphasizing the centrality of the fine-tuning
process in code-oriented adaptation.

Recent work has focused on improving efficiency, robustness,
and interpretability in LLM-based summarization [46]. Su et al. [45]
applied knowledge distillation to reduce computational costs, while
Mastropaolo et al. [31] proposed semantic-aware evaluation metrics
to better assess summary fidelity. Virk et al. [47] exposed calibration
deficiencies that undermine model reliability, and Mondal et al. [33]
examined robustness to adversarial perturbations. Interpretability
analyses further uncovered a persistent misalignment between
model-generated attention and developer comprehension: Li et
al. [25] showed that neural attention often diverges from code
regions developers focus on, leading to summaries that are lexically
fluent but semantically incomplete. This gap between surface-level
correlations and true comprehension has motivated recent studies
to augment fine-tuning with auxiliary behavioral cues such as eye-
tracking, exemplified by EyeTrans [55], which guide transformer
attention toward semantically salient regions.

EyeLayer continues this trajectory by strengthening the super-
vised fine-tuning of LLM-based summarization. Rather than re-
designing model architectures or relying on heavy supervision, it
introduces lightweight cognitive priors into the fine-tuning pipeline
to steer attention toward functionally important code regions.

9 Conclusion
This work demonstrates that human cognitive patterns captured
through eye-tracking can effectively enhance LLM-based code
summarization. We introduced EyeLayer, a lightweight attention-
augmentation module that integrates sparse human attention sig-
nals into LLMs through Multimodal Gaussian Mixture Models, en-
abling models to learn how developers naturally focus on semanti-
cally critical code regions during comprehension. Our evaluation
across fivemodels spanning different scales and architectures shows
consistent improvements, validating that human expertise provides
complementary signals that enhance LLM capabilities beyond what
standard supervised fine-tuning achieves. Our methodology estab-
lishes a framework for incorporating human cognitive processes
into LLMs for code comprehension, contributing to the develop-
ment of more capable and interpretable developer tools as software
systems continue to grow in complexity.
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