21
22
23
24
25
26
27
28
29

39
40
41
42
43
44

46
47
48

49

EyeLayer: Integrating Human Attention Patterns into LLM-Based
Code Summarization

Anonymous Author(s)

Abstract

Code summarization is the task of generating natural language
descriptions of source code, which is critical for software compre-
hension and maintenance. While large language models (LLMs)
have achieved remarkable progress on this task, an open question
remains: can human expertise in code understanding further guide
and enhance these models? We propose EyeLayer, a lightweight
attention-augmentation module that incorporates human eye-gaze
patterns, as a proxy of human expertise, into LLM-based code sum-
marization. EyeLayer models human attention during code reading
via a Multimodal Gaussian Mixture, redistributing token embed-
dings based on learned parameters (y;, criz) that capture where and
how intensively developers focus. This design enables learning
generalizable attention priors from eye-tracking data and incor-
porating them into LLMs seamlessly, without disturbing existing
representations. We evaluate EyeLayer across diverse model fam-
ilies (i.e., LLaMA-3.2, Qwen3, and CodeBERT) covering different
scales and architectures. EyeLayer consistently outperforms strong
fine-tuning baselines across standard metrics, achieving gains of
up to 13.17% on BLEU-4. These results demonstrate that human
gaze patterns encode complementary attention signals that enhance
the semantic focus of LLMs and transfer effectively across diverse
models for code summarization.

Keywords

Code Summarization, Human Factors in Software Engineering,
Human-centered Al for Software Engineering

ACM Reference Format:

Anonymous Author(s). 2018. EyeLayer: Integrating Human Attention Pat-
terns into LLM-Based Code Summarization. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation email
(Conference acronym °XX). ACM, New York, NY, USA, 12 pages. https:
//doi.org/XXXXXXX XXXXXXX

1 Introduction

Software documentation is an essential bridge between code imple-
mentation and developer understanding, with code summarization
facilitating efficient program comprehension [1, 46]. As modern
software systems become increasingly complex, quickly grasping
code functionality through concise summaries is critical for main-
tenance and evolution. Consequently, automatically generating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Conference acronym *XX, Woodstock, NY

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

high-quality summaries has become a central challenge in software
engineering [24, 37].

Recent advances in large language models (LLMs) have demon-
strated remarkable capabilities in code-related tasks, particularly in
code summarization [11, 21, 46]. While these models have achieved
good performance by learning from vast corpora of code—summary
pairs, there remains a gap in generating human-aligned summaries
that capture the information humans actually focus on during
code comprehension([2, 5]. Meanwhile, when developers compre-
hend code to formulate summaries, their attention patterns re-
veal how they selectively allocate focus across different parts of
the code [24, 40]. In previous software engineering research, eye-
tracking studies have been widely used to extract developers’ at-
tention patterns which is a promising proxy for their cognitions
during programming activities [39, 41, 42]. This motivates a key
question: can incorporating human attention signals further
enhance LLM-based code summarization?

The most recent research has attempted to guide Al model devel-
opment leveraging developers’ attention patterns and demonstrated
promising benefits of such guidance. EyeTrans [55] for the first time
integrated eye-gaze signals into a single Transformer block for code
summarization, achieving up to 6.39% improvement. However, it
remains unknown whether human attention can actually enhance
modern LLMs, which differ substantially in scale, architecture, and
optimization dynamics. This uncertainty limits their potential im-
pact on real-world applications.

To bridge the gap between human and LLM attention mecha-
nisms, we propose EyeLayer, a lightweight architectural module
that integrates human eye-gaze data into LLM-based code summa-
rization. Our approach is grounded in a key insight: during code
comprehension, programmers naturally focus their attention un-
evenly across the code, concentrating intensively on semantically
critical regions while peripherally attending to contextual elements.
EyeLayer models this distributional attention as a transferable prior,
learned from a curated eye-tracking corpus of 27 professional de-
velopers [55], which captures how human gaze behavior reflects
semantic importance during real code comprehension. It employs
a Multimodal Gaussian Mixture to redistribute each code em-
bedding based on learned parameters (y;, O'iz), which encode both
the intensity and spread of human attention. Integrated into the
supervised fine-tuning process, EyeLayer leverages these human-
derived priors to improve how pretrained models allocate focus
across code tokens without altering the original model architec-
ture. Despite being trained on a small but cognitively grounded
dataset, EyeLayer generalizes effectively to large-scale LLMs, show-
ing that even limited human attention data can yield measurable
improvements.

Functionally, EyeLayer serves as a recommendation system for
code embedding redistribution: for each code embedding, it predicts
a small set of Gaussian modes that recommend how its representa-
tion should be redistributed. This mechanism allows the model to

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

compose fine-grained and global focus patterns, analogous to per-
sonalized recommendation in representation space. By decoupling
gaze-informed redistribution from the model’s intrinsic attention
weights, EyeLayer learns generalizable attention priors from sparse
eye-tracking data and transfers them to unseen code. Incorporated
within LLMs, it preserves pretrained representations while infusing
human-like focus behavior directly into the attention redistribution
process.

We evaluate EyeLayer across five models spanning different
scales and architectures: CodeBERT (125M) [14], LLaMA-3.2-1B/3B-
Instruct [18], and Qwen3-1.7B/4B-base [48]. All EyeLayer-augmented
models are compared against strong supervised fine-tuned baselines
trained on identical code summarization data (CodeXGLUE [22, 29])
but without eye-tracking integration, isolating the contribution of
human attention signals. Evaluation uses four widely-adopted met-
rics capturing lexical overlap (BLEU[35], ROUGE-L[27], METEOR([4])
and semantic similarity (BERTScore[52]). Across all five models,
EyeLayer achieves consistent gains over fine-tuning baselines, with
improvements up to 13.17% on BLEU-4, confirming that human
attention signals enhance LLM performance across architectures.

This paper makes the following contributions:

e We propose a framework for integrating human cognitive
priors into large language models for code summarization.
Using eye-tracking data as transferable probabilistic priors,
our approach establishes a bridge between human attention
behavior and LLM-level attention formation.

o We design the Multimodal Gaussian EyeLayer, a lightweight,
recommendation-like module that redistributes code em-
beddings through learnable Gaussian mixtures. This mecha-
nism decouples gaze-informed redistribution from intrinsic
attention weights, enabling scalable integration of sparse
human signals into billion-parameter LLMs without dis-
rupting pretrained representations.

e We conduct a systematic evaluation across five LLMs span-
ning both encoder-only and decoder-only architectures,
demonstrating consistent improvements on the CodeXGLUE
benchmark and strong transferability of learned attention
priors to unseen code.

o To facilitate reproducibility and foster future research, we
release our implementation scripts and datasets at URL.

In the rest of this paper, Section 2 presents the background of
eye-tracking in program comprehension and probabilistic attention
modeling. Section 3 introduces the design and implementation
details of the proposed EyeLayer architecture. Section 4 details
the experimental setup. Section 5 analyze the results. Section 6
discusses potential threats to validity. Section 7 provides a broader
discussion of findings and implications. Section 8 reviews related
work. Finally, Section 9 concludes the paper and outlines directions
for future research.

2 Background

Human gaze behavior offers empirical insight into how developers
comprehend code, while probabilistic attention provides a princi-
pled way to model such focus computationally. This section reviews
key findings from eye-tracking studies and links them to Gaussian-
based attention formulations that inspire our EyeLayer design.

Anon.

2.1 Eye-tracking for Program Comprehension

Eye-tracking has become a rigorous method for examining cogni-
tive processes in software engineering research, particularly in un-
derstanding how developers read and comprehend source code [17,
40]. By capturing gaze behavior, eye-tracking enables the quantita-
tive analysis of attention allocation and processing effort with high
temporal precision. In software engineering, this relationship is
particularly relevant because program comprehension, like natural
language reading, involves the incremental interpretation of com-
plex visual and semantic structures [41]. Fixation-based metrics
provide a means to infer where and when developers engage in in-
formation processing, distinguishing meaningful cognitive activity
from mere visual transitions represented by saccades [39].

The theoretical basis for interpreting gaze data originates from
cognitive psychology, most notably the work of Just and Carpen-
ter [23]. Their eye-mind assumption states that the duration of a
fixation, the period of relative ocular stability directly reflects the
time required for cognitive processing. This principle established
fixations as a reliable indicator of comprehension effort in reading,
linking visual attention to linguistic and semantic processing. Em-
pirical evidence shows that fixations occupy the vast majority of
viewing time during code reading, emphasizing their role as the
fundamental unit of analysis for understanding comprehension
behavior [40, 41]. Overall, fixation analysis offers a direct and in-
terpretable connection between observable gaze patterns and the
underlying cognitive mechanisms of program understanding, mak-
ing eye-tracking a valuable empirical approach for investigating
how developers read, reason about, and make decisions based on
source code.

2.2 Probabilistic Attention and Cognitive Priors

Transformer attention can be framed probabilistically, with weights
parameterized as continuous distributions over positions. Gaussian
parameterizations offer a simple and interpretable form: a mean
for focus location and a variance for spread. Representative studies
show concrete uses of such priors. Chorowski et al. introduced
Gaussian-shaped attention for sequence-to-sequence alignment in
speech recognition [8]. Cordonnier et al. analyzed self-attention
and showed that learned patterns relate closely to Gaussian-like
kernels over relative positions [10]. You et al. further reported that
hard-coded Gaussian windows can match the performance of fully
learned attention in machine translation, indicating that Gaussian
structure can serve as an effective bias [49]. To allow multiple foci,
Graves modeled attention as a mixture of Gaussians in recurrent
architectures, capturing multi-modal alignments with learnable
centers and spreads [19].

This probabilistic view aligns with findings from eye-tracking.
Studies in software engineering report localized and selective fixa-
tions during code reading [7, 42]. Such fixation maps are commonly
summarized as peaked distributions over spatial locations. Neural
models inspired by selective vision, such as DRAW, use parame-
terized Gaussian filters to realize differentiable focus regions [20].
These results motivate representing model attention with Gaussian
or mixture forms when human-like focus is desirable.

Guided by this evidence, our EyeLayer treats attention as a learn-
able mixture with sparse mode selection. The formulation provides

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

https://zenodo.org/records/17452570?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImZhZjA1YjA5LWEzZTItNDA2My04NGE0LTJiMjQ5Mzg1OGVlMiIsImRhdGEiOnt9LCJyYW5kb20iOiJlNmQzOTZlMWE2ZmJkNmFlMjRjMmU1NTliYWZlMjc5NSJ9.35itoTvmSoTdm-NW2Eibx6E7OO50lpoFzZxBcDS2VJu3aKilXL60f4JkjVNoz7kMkTIfvSM8AD-yo9qYTrN5ng

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization

an interpretable parameter space (centers, spreads, and weights)
consistent with probabilistic attention and with observed fixation
patterns in code comprehension. This connects a statistical prior on
attention with cognitively grounded signals in a single mechanism.

3 Methodology

Our training employs a carefully designed dual-dataset strategy that
separates the primary code summarization task from the auxiliary
eye-tracking alignment task, enabling learning from both large-
scale code-summary pairs and sparse but cognitively grounded
attention signals. Figure 1 provides an overview of our complete
approach.

3.1 Datasets and Preprocessing

Our training employs a carefully designed dual-dataset strategy that
separates the primary code summarization task from the auxiliary
eye-tracking alignment task, enabling learning from both large-
scale code-summary pairs and sparse but cognitively grounded
attention signals.

Code Summarization Corpus. We use the Java subset of the
CodeXGLUE benchmark [29], a widely-adopted dataset containing
Java methods paired with their corresponding docstring summaries
extracted from open-source repositories. The dataset provides di-
verse code patterns spanning different programming idioms, com-
plexity levels, and documentation styles, enabling robust learning
of the code-to-summary mapping across varied contexts.

Eye-Tracking Corpus. We derive the auxiliary alignment su-
pervision from the EyeTrans corpus [55], which records the gaze
behaviors of developers during controlled code comprehension
tasks. Each sample links a Java method to its Abstract Syntax Tree
(AST) and corresponding fixations that capture how programmers
allocate attention across syntactic and semantic regions. A fix-
ation is defined as a spatially stable gaze lasting approximately
100-300 ms [40], during which most visual information process-
ing occurs [23]. Each fixation is localized on screen coordinates
and mapped to its corresponding AST node, producing discrete yet
cognitively grounded attention signals. These node-level fixation
counts are then aligned to model-level subtoken representations
through our three-stage matching pipeline described below, provid-
ing precise human-derived supervision for multimodal alignment
in the EyeLayer.

To effectively integrate these fixation-based signals into the
model, we must reconcile the representational gap between the
human gaze space and the model input space. The eye-tracking
corpus encodes attention in the AST node space, identifying which
syntactic constructs programmers focus on, whereas the multi-
modal EyeLayer operates in the subtoken space, defined by byte-
pair encoded tokens from the model tokenizer. This mismatch is
non-trivial: (1) a single AST node like BFSdistance may split into
multiple subtokens [BFS, distance], (2) tokenization varies based
on surrounding context and instruction templates, and (3) abstract
AST nodes have no direct token correspondence. We address this
through a three-stage alignment pipeline: first, we traverse the AST
to extract concrete code elements; second, we apply context-aware
tokenization matching the model’s instruction format; finally, we

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

use multi-strategy matching—exact matching for simple cases, con-
secutive aggregation for split tokens, and character offset estimation
for complex constructs—to map AST nodes to subtoken indices.
This pipeline achieves >98% mapping accuracy and enables us to
transfer sparse node-level fixation counts to the dense subtoken
representations required for attention supervision.

Independent Data Sources. To ensure clear supervision bound-
aries, the two datasets are kept entirely independent. The code sum-
marization corpus drives the primary generation objective, while
the eye-tracking corpus contributes auxiliary alignment supervi-
sion. They contain disjoint code samples, eliminating data leakage
and ensuring that observed improvements stem from the integra-
tion of human cognitive priors rather than exposure to additional
labeled summaries.

3.2 Multimodal Gaussian EyeLayer

Our approach builds on the key insight that, during code compre-
hension, programmers allocate attention unevenly across the code:
they concentrate intensively on semantically critical regions while
attending peripherally to contextual elements. This uneven distribu-
tion can be viewed as a composition of several focus patterns, each
representing a localized concentration of attention over the token
sequence. To model this behavior, the Multimodal Gaussian Eye-
Layer represents attention as a mixture of Gaussian components.
Each component defines a focus region characterized by a center p
(semantic locus) and spread o (contextual extent), while a sparse
gating network determines how many such regions are needed for
each code snippet. This formulation captures both concentrated
and distributed focus within a unified probabilistic framework, al-
lowing the model to adaptively modulate attention according to
code structure and semantics.

The EyeLayer integrates into pretrained decoder-only transform-
ers (e.g., LLaMA, Qwen) through hook-based injection at an inter-
mediate layer. During forward propagation, it intercepts hidden
states H, applies the EyeLayer transformation, and returns updated
representations H’ to subsequent layers. This hook-based design
preserves the causal structure of the base model while enriching its
intermediate representations with human-aligned attention priors,
as illustrated in Figure 2.

3.2.1 Code-Level Embedding. Before predicting Gaussian param-
eters, the model first summarizes the overall semantic context of
the input sequence. For hidden states H € RBXLXd from an inter-
mediate transformer layer, we apply an attention mask Matin and
a special-token mask Mgpecial to form M = Mattn © (1 — Mgpecial)-
When positional information is available, a decay factor Dp, = y!
(y = 0.95) down-weights distant tokens. The code-level embedding
is computed as:

L
e = Ziz MiDpiHi (1)
ZiLzl M,' + € ’

where € is a small constant to avoid division by zero. The resulting
vector e € R4 provides a compact semantic summary for mode
prediction.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

© Data Preparation

Anon.

_LLaMA
> o GO Meta @ Qwen3 @) CodeBERT

Inference

Code

EyelLayer

1l
LLM & Eyelayer
¥

Summary

Primary Corpus \
Code Summarization
Corpus
Primary Task:
Code » Summary
N

-

Auxiliary Corpus

&

Primary Task

Train:

)

® Multimodal Joint Training

LLM + Eyelayer Eyelayer only
P -y * BLEU
EVETRACKING Every step Every K steps . E/ICE)_LIJ g g;‘
.
Auxiliary Task: n * BERTScore
e
N J L J _J

Auxiliary Task
Evaluation

Train:

Figure 1: Overview of our joint training pipeline.

Hidden States H

)’

Code-Level
Embedding
Sparse Gating
Network

v

Mode-Specific Parameter Heads
Mode 1 Mode 2 Mode 3
M1, O1 Mz, 62 s, O3

v

Predicted Gaussian
Redistribution

v

Hidden States
Redistribution H'

Figure 2: The Multimodal Gaussian EyeLayer architecture.

3.2.2 Sparse Gating Mechanism. To decide how many Gaussian
components should be activated for each code sequence, the Eye-
Layer uses a lightweight gating network that maps the code em-
bedding e to a normalized weight vector w € RX:

w = softmax(W2 ¢(Wie +by) +by), 2)

where ¢(+) is a non-linear activation, and W1, Wy, by, by are learn-
able projection and bias parameters. The softmax normalization
ensures Y, w(K) = 1, yielding interpretable mode activations that
indicate the relative contribution of each Gaussian component. This

gating mechanism encourages sparse activation: simple functions
tend to concentrate weight on a single mode, whereas more complex
code distributes attention across multiple regions. Such adaptive
allocation allows the model to adjust its focus continuously without
introducing discrete decisions or additional supervision.

3.2.3 Mode-Specific Parameterization. Each active mode predicts
its Gaussian parameters based on shared semantic features ex-
tracted from the same code embedding e. The shared representation
is computed as:

hghared = Dropout(LayerNorm(GELU(W e + by))), (3)

where Wy, and by, are learnable projection parameters. Each mode
then applies lightweight linear heads:

N k k
fik = W hghared + b5, 4)
- k k

O = Wz(r >hshared + bz(r)s (5)

where [i; and 6} are raw predictions for the center and spread
of the k-th Gaussian component. Predictions are constrained to
Hr € [0,L—1] and oy € [Omin, L/2] to ensure valid ranges. Centroid
biases are initialized to cover early, middle, and late regions of the
sequence to promote spatial diversity during early training.

3.24 Gaussian Mixture Construction. The final attention distribu-
tion is formed as a weighted mixture of K=3 Gaussian components:

exp(_ (i—uk>2)

2
20

:_ 2 ’
ZJL-=1 exp(_ G /—’;c))

Zak

(6)

K
P(i) =) w®
k=1

where P(i) denotes the predicted attention probability for token po-
sition i in a sequence of length L. Each token position corresponds to
a code token aligned with an AST node, thus representing a specific

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

461
462
463
464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization

syntactic or semantic unit in the source code. w(k) is the normal-
ized weight of the k-th mode, and the denominator ensures each
Gaussian is properly normalized over all token positions. Smaller oy
values produce sharper, concentrated peaks representing focused
reading, whereas larger oy values yield broader distributions that
capture peripheral attention. The resulting mixture P(i) forms a
smooth, interpretable, and differentiable attention distribution that
aligns with empirical human fixation patterns and supports end-
to-end optimization. The resulting distribution (P(i)) serves as the
human-aligned attention prior used in the subsequent causal-aware
redistribution stage (Section 3.3).

3.3 Causal-Aware Attention Redistribution

Integrating human-guided attention into decoder-only transform-
ers predicted by the EyeLayer requires preserving their causal au-
toregressive dependency. Unlike encoder-based models that per-
mit bidirectional attention, decoder-only architectures must main-
tain strict left-to-right information flow so that each token pre-
diction depends only on preceding context. Directly modifying
attention weights or masks would break this constraint and dis-
rupt key—value caching during generation. To address this, we im-
plement causal-aware redistribution, which injects human-aligned
guidance through residual perturbations of hidden states rather
than altering attention masks. The perturbation is shaped by the
Gaussian attention distribution predicted by the EyeLayer, enabling
soft alignment toward human-attended regions while fully preserv-
ing causality. The mechanism proceeds in three stages: (1) low-rank
transformation for compact perturbation generation, (2) attention-
guided weighting for cognitively informed modulation, and (3)
adaptive gating for dynamic integration control.

3.3.1 Low-Rank Transformation. To prevent overfitting on lim-
ited eye-tracking data, perturbations are generated through a low-
rank bottleneck. Given hidden states H € RE*LX4 from a target
transformer layer, we first down-project and then reconstruct the
representations:

Z = ReLU(HW goyn), (7)
AHpyse = ZWyp, (8)

where Wyoun € RY" and Wyp € R"*4 are learnable projections
with rank r < d. This factorization requires only 2dr parameters
instead of d2, providing a 64X reduction when r = 16 for d = 2043,
while retaining sufficient representational capacity.

3.3.2 Attention-Guided Weighting. The perturbation is reweighted
according to the predicted Gaussian attention distribution, empha-
sizing regions that align with human gaze. For each sample b and
token position i, we compute:

AHy,; = APy (i) AHpyse p; © A, 9

where Py, (i) denotes the mixture-based attention probability at
position i, A is a learnable scaling coefficient, A; € {0, 1} marks
valid token positions, and © represents element-wise multiplication.
Since redistribution operates on hidden representations rather than
attention masks, causal self-attention remains intact: each token

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

still attends only to past positions (j < i), while its representa-
tion is softly modulated toward human-attended regions. Gradient
clipping is applied to ensure numerical stability.

3.3.3 Adaptive Gating and Integration. Finally, an adaptive high-
way gate controls the strength of human-guided perturbation for
each sample. A scalar gate value g € [0, gmax] is computed as:

gb = gmax 0(MLP([hy; fp])), (10)
where hy, = % Z%:] Hp,; is the mean-pooled hidden state (layer-
normalized before concatenation), f}, encodes global statistics of
the attention distribution (e.g., entropy, maximum probability, and
in the multimodal case, mode count and weight entropy), and o (-)
is the sigmoid activation. The MLP is initialized with a negative
bias to encourage conservative gating during early training. The
final hidden states are obtained via residual integration:

H;J,i =Hp;+agp AHb,i: (11)

where « is a global scaling constant. When gy, is small, the EyeLayer
exerts minimal influence; as g;, increases, stronger redistribution
occurs, enabling adaptive incorporation of human attention signals
while preserving the model’s pretrained representations.

3.4 Model Integration

The Multimodal EyeLayer integrates with transformer architectures
through strategies that respect their information flow, as shown in
Figure 3.

Decoder-only (LLaMA/Qwen)

Code Tokens (Input)
Decoder Layers

EyeLayer

Decoder Layers Transformer Decoder
Summary Output Summary Output

Figure 3: Integration of the EyeLayer into transformer archi-
tectures for code summarization. Note that since CodeBERT
is an encoder-only model, an auxiliary decoder is attached
for sequence generation in the code summarization task.

Encoder-only (CodeBERT)

Code Tokens (Input)
CodeBERT Encoder

EyeLayer

Decoder-Only Models (LLaMA, Qwen). For autoregressive
decoder-only architectures, the EyeLayer is injected at an interme-
diate transformer layer. During forward propagation, when the base
model reaches the target layer, the hook intercepts hidden states H,
applies the EyeLayer transformation, and returns enhanced repre-
sentations H’ to subsequent layers. The predicted distribution P(i)

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

guides causal-aware attention redistribution (Section 3.3), which
enforces that token i only attends to positions j < i and preserves
the decoder’s generation order.

Encoder-Only Models (CodeBERT). For encoder-only archi-
tectures, the EyeLayer operates after CodeBERT and before the
auxiliary decoder. CodeBERT processes the input code to produce
contextualized hidden states Henc, which are pooled to obtain a
global code embedding that drives gating and mode prediction. The
resulting P(i) modulates Hepc via a non-causal low-rank perturba-
tion over token positions; causal masking is not applied because
the encoder is bidirectional. The decoder then cross-attends to the
modulated encoder representations enriched with human-aligned
attention priors.

3.5 Joint Training

After integrating the EyeLayer into the model architecture, we
jointly train the system on the primary code summarization and
auxiliary eye-tracking alignment tasks. This joint learning setup
allows the model to balance large-scale textual supervision with
sparse but cognitively grounded human signals. Formally, the over-
all objective combines a generation loss Lgen and an auxiliary
alignment loss L,)igy (defined in Section 4.3.2):

Liotal = -Cgen + Aalign Lalign» (12)

where A,)iy, is a small weighting coefficient that ensures the align-
ment supervision acts as a regularizer rather than dominating opti-
mization.

3.5.1 Interleaved Training Schedule. Because the two datasets dif-
fer greatly in scale, with tens of thousands of code-summary pairs
and only hundreds of eye-tracking samples, we adopt an inter-
leaved training schedule to maintain stability. During each epoch,
the model primarily trains on the summarization dataset, updat-
ing parameters with Lgep, at every step. Every K steps (typically
K = 200), a batch from the eye-tracking dataset is inserted, and Eye-
Layer is optimized jointly on Lo, with gradient conflict handling
described in Section 3.5.2. At the end of each epoch, we conduct
a dedicated alignment sweep over the entire eye-tracking dataset
while freezing the base model parameters, updating only the Eye-
Layer components. This two-phase schedule maintains consistent
exposure to the generation objective and provides sufficient gradi-
ent signal for the EyeLayer through dedicated alignment phases,
preventing the alignment objective from being overshadowed by
the main summarization task.

3.5.2 Projecting Conflicting Gradients (PCGrad). Multi-task opti-
mization often leads to conflicting gradient directions between
objectives. In our setting, the EyeLayer parameters are influenced
by both Lgen and Lyjigy, which may occasionally compete. To
reconcile these objectives, we employ Projecting Conflicting
Gradients (PCGrad) [50], which detects negative cosine similarity
between task gradients and removes the conflicting component
through orthogonal projection. When gradients are aligned, both
signals are preserved; when they diverge, PCGrad adjusts each
gradient to retain only the non-conflicting directions. The final pa-
rameter update uses the mean of the projected gradients, ensuring
that human-guided supervision complements rather than disrupts
the main learning objective.

Anon.

4 Experimental Setup

This section details the experimental configuration used to evalu-
ate the proposed Multimodal Gaussian EyeLayer. We describe (1)
dataset construction for both code summarization and eye-tracking
supervision, (2) models and training infrastructure, and (3) eval-
uation metrics for summarization quality and human attention
alignment. These components collectively establish the framework
for answering the research questions presented in Section 5.

4.1 Datasets

Code Summarization Dataset. We use a subset of CodeXGLUE [29],
derived from CodeSearchNet-Java, as the primary supervision source.
To reduce training cost while preserving data diversity, we sample
10% of the corpus, yielding 16,492 training pairs, 518 validation
pairs, and 1,095 test pairs. Each instance consists of a Java method
paired with its corresponding docstring summary extracted from
open-source repositories.

Eye-Tracking Dataset. We adopt the EyeTrans corpus [55] for
human attention supervision. The corpus involves fixation data
from 27 programmers performing code summarization tasks. Each
data point corresponds to a unique (developer, method) pair, cover-
ing 64 unique functions across diverse Java projects. We obtain 625
annotated samples with fixation sequences aligned to AST nodes.
These samples provide sparse but cognitively grounded supervision
for guiding attention redistribution.

4.2 Models and Training Infrastructure

We evaluate our Multimodal Gaussian EyeLayer across three repre-
sentative transformer architectures spanning different scales and
designs: LLaMA3.2-1B and LLaMA3.2-3B (decoder-only instruction-
tuned models), Qwen3-1.7B and Qwen3-4B (decoder-only base
model), and CodeBERT (encoder-only code model). Training and
evaluation are conducted on a single NVIDIA L40S GPU (45GB
VRAM), confirming that our approach remains computationally
efficient while effectively incorporating human attention guidance.

4.3 Evaluation Metrics

4.3.1 Code Summarization Metrics. We evaluate generation quality
using four widely adopted metrics:

e BLEU [35]: Computes modified n-gram precision with a
brevity penalty to quantify lexical overlap with references.

e ROUGE-L [27]: Measures F1 based on the longest common
subsequence, reflecting sequence-level similarity.

e METEOR [4]: Aligns words using exact, stem, and syn-
onym matches with fragmentation penalties, emphasizing
recall and paraphrase recognition.

e BERTScore [52]: Computes contextual embedding simi-
larity to assess semantic alignment between candidate and
reference texts.

4.3.2 Attention Alignment Metrics. To align model-predicted at-
tention with human fixation patterns while preserving multimodal
diversity, we define:

Lalign = Liatch + AsepLMSP, (13)

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

Eyelayer: Integrating Human Attention Patterns into LLM-Based Code Summarization

where L atch aligns each Gaussian mode with fixation data, and
Lnisp enforces spatial separation among active modes. The match-
ing term is computed as Lyatch = 2115:1 w(k) >t AtLt(k), where
t € {CAL, SML, CR, AUP} and w(¥) is the normalized mode weight.
Here w'k), Hi, and oy denote the weight, center, and spread of the
k-th Gaussian; Py (i) is its normalized probability at token position
i; F(i) is the human fixation frequency; and € is a small stability
constant.

Centroid Alignment (CAL). LgXL = V(U = thuman)? + €,
where phuman 1s the empirical fixation centroid. This term aligns
each predicted attention center y; with human focus regions.

Spread Matching (SML). Lél]\C/I)L =
Otarget represents the observed fixation spread. It ensures each mode
captures realistic human attention breadth.

Concentration Reward (CR). .Cg;) =1—(Ziew Pk(i))z,
where W is a local window around attended tokens. This rewards
probability mass concentrated near human fixation areas.

Anti-Uniform Penalty (AUP). .[ZX;J)P = max(0, c—Dkr (U||Px)),
where U (i) = 1/L is the uniform baseline, Dy, is KL divergence, and
c is a small positive margin controlling the penalty strength. This
term penalizes near-uniform distributions and promotes sharper
attention focus.

Mode Separation (MSP). Lysp = Yk, <k, Sk k, max(0, m —

/ (Ok — Gtarget)? + €, where

|tk, = Hi,|), Where s, = I[w®*) > 7I[w®*2) > 7], ¢ is the
activation threshold, and m is the minimum distance between ac-
tive mode centers. This term maintains spatial diversity across
Gaussian components.

5 Experimental Results and Analysis

To evaluate the proposed Multimodal Gaussian EyeLayer, we ad-
dress four research questions designed to quantify its effect on
model performance, architectural behavior, and design components.

¢ RQ1 - Does EyeLayer improve code summarization
quality compared to standard supervised finetuning?

e RQ2 - How does the position of the EyeLayer within
the transformer stack influence performance?

e RQ3 - How effectively does the EyeLayer generalize
to encoder-only architectures?

¢ RQ4 - How does EyeLayer multimodal design con-
tribute to performance?

5.1 RQ1: Effectiveness Compared to SFT

RQ1 investigates whether integrating the proposed EyeLayer im-
proves code summarization quality compared to standard super-
vised finetuning (SFT) without eye-tracking guidance. We evaluate
four representative models: instruction-tuned (Llama3.2-1B/3B) and
base (Qwen3-1.7B/4B).

As shown in Table 1, integrating EyeLayer leads to consistent
gains across all models and evaluation metrics. Improvements ap-
pear in both lexical metrics (BLEU, ROUGE, METEOR) and semantic
similarity (BERTScore), suggesting that cognitively inspired atten-
tion cues can guide the model toward more functionally meaningful
code regions. For instruction-tuned models (Llama3.2-instruct), Eye-
Layer yields steady gains, particularly for the 1B model (+1.8 BLEU-
4/ +1.9 METEOR). For base models(Qwen3), the improvement is

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

@suppressWarnings
public stati

nchecked")
R> booleanéryscalarXMapSubscribe D
D> source,
SubsScreher<? super R> subscriber,
Function<? Bwper T, ? extends Publisher<? extends R:

if (source instanceof Carde
T t = ((Callable<T>) source).call();

Mapper.apply (t)

if (r instanceof Callable) {
R u = ((Callable<R>) r).call();

subscriber.onSubscribe (De
} els®

ScalarSubscription<R>(subscriber, u));
r.subscribe(subscriber);

Subscribes to the publisher using the
mapper function as subscription handler.

Publisher<? extends R> r

Tries to create a scalar subscription
for a given publisher.

With EyeLayer Baseline

Figure 4: Example from CodeXGLUE illustrating EyeLayer’s
improvement over the baseline. Depict the inferred gaze-
inspired attention across semantically related code regions.

larger in absolute terms, particularly for Qwen3-1.7B (ROUGE-
L: +5.28, METEOR: +5.43), which indicates that models lacking
instruction-level supervision may benefit more from additional
attention prior.

The performance improvement suggests that EyeLayer subtly
guides intermediate attention toward critical code regions that
typically attract human gaze, thereby improving the quality of gen-
erated summary. The relatively larger gains observed in smaller
models imply that supervision from the eye-tracking corpus pro-
vides a more informative inductive signal when model capacity
and learned abstractions are limited. Larger models which already
develop rich internal attention patterns, exhibit smaller yet con-
sistent benefits. These observations collectively point to EyeLayer
as a light but effective cognitive guidance mechanism, offering
additional structure to models operating under supervision.

Figure 4 illustrates a representative example that demonstrates
how EyeLayer enhances the generated summary. The baseline out-
put, “Tries to create a scalar subscription for a given publisher,” cap-
tures only surface lexical cues, whereas EyeLayer produces a more
accurate behavioral description, “Subscribes to the publisher using
the mapper function as subscription handler.” Compared to the base-
line, EyeLayer places stronger focus on the method declaration
and variable declarations, which are semantically critical regions
for capturing functional intent. This pattern resonates with the
human attention dynamics reported by Karas et al. [24], where
programmers most frequently alternate their gaze between method
declarations and variable declarations during code comprehension.
The correspondence suggests that EyeLayer internalizes similar
focus tendencies without explicit gaze supervision during infer-
ence, enabling the model to generalize cognitive attention patterns
that guide summarization toward semantically informative code
regions.

RQ1 Summary. EyeLayer consistently improves summariza-
tion across all models, with larger gains in smaller or less
supervised settings, showing that lightweight cognitive cues
enhance semantic focus in code comprehension.

760
761
762
763

764

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

806

813
814
815
816

817

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Anon.

Table 1: Performance comparison of baseline models and models with EyeLayer integration. Values in parentheses denote

absolute improvement over the SFT baseline.

Model | BLEU-4 ROUGE-L METEOR BERTScore
Llama3.2-1B 14.31 22.12 27.45 87.55
Llama3.2-1B + EyeLayer | 16.18 (+1.87) 23.51 (+1.39) 29.33 (+1.88) 88.51 (+0.96)
Llama3.2-3B 15.64 24.57 29.83 88.29
Llama3.2-3B + EyeLayer | 16.86 (+1.22) 25.25 (+0.68) 31.04 (+1.21) 88.72 (+0.43)
Qwen3-1.7B 13.36 21.39 26.60 86.04
Qwen3-1.7B + EyeLayer | 15.12 (+1.76) 26.67 (+5.28) 32.03 (+5.43) 86.38 (+0.34)
Qwen3-4B 15.24 23.73 29.45 85.87

Qwen3-4B + EyeLayer 17.22 (+1.98)

25.30 (+1.57)

3131 (+1.86) 86.27 (+0.40)

5.2 RQ2: Effect of EyeLayer Insertion Position

17.00 238

16.75

16.50 236 23.51

16.25 16.18 23.37 23.37
15.99

1600/ 15.89 15.88

15.75 232

15.50 15.41

23.21
23.05

15.25 Primary BLEU-4 score

15. 5 22. 1

Primary ROUGE-L score
13

4 7 10 2 7 10
Eyelayer Position Eyelayer Position

(a) BLEU-4 (b) ROUGE-L
30.00 88.7
29.75
29.50 s 20.33 | 886 88.56
2025] 29; 29.10 88.53
oo o s 88.51 88.51
28.75 88.41
28.50 2395 884

28.25 Primary METEOR score

13 1

Primary BERTScore score

13

) 7 10
Eyelayer Position

(d) BERTScore

4 7 10
Eyelayer Position

(¢) METEOR

Figure 5: Performance of Llama3.2-1B-Instruct when the Eye-
Layer is inserted at different transformer layers.

We investigate how integration depth affects performance by
inserting the EyeLayer into different transformer layers of Llama3.2-
1B-Instruct (16 layers). Figure 5 shows the different metric trends
across positions.

Two clear patterns emerge: (1) performance improves toward
deeper layers and peaks at layer13, and (2) a temporary drop appears
around layer 4. This trend aligns with the hierarchical roles of
transformer layers [32, 44]. Early layers capture lexical and syntactic
features, middle layers integrate contextual semantics, and later-
middle layers refine coherent representations for generation [13].
The degradation at layer 4 likely reflects interference with unstable
intermediate encodings, as this stage is still reorganizing shallow
features into higher-level structures [53]. At layer 13, semantic
representations are largely formed yet remain adaptable. Injecting
human attention priors here allows modulation of semantic focus
without disrupting earlier composition, enhancing alignment with
meaningful program structures [32, 44].

Overall, these results highlight that the integration of cognitive
priors depends strongly on the model’s representational stage, with

later-middle layers providing the best balance between semantic
completeness and flexibility [13, 53].

RQ2 Summary. Performance peaks at later-middle layers,
where semantic representations are mature yet flexible, indi-
cating that cognitive priors are most effective after semantic
integration but before generation.

5.3 RQ3: Generalization to Encoder-Only
Architectures

Building on the results from decoder-only models (RQ1) and the
optimal integration depth analysis (RQ2), RQ3 examines whether
EyeLayer generalizes to encoder-only architectures, which differ
fundamentally in information flow and attention dynamics. We
evaluate this transferability using CodeBERT with the encoder-
side integration strategy described in Section 3.4. The results are
summarized in Table 2.

EyeLayer maintains consistent improvements across all metrics,
despite the architectural shift from decoder-only to encoder-only
models. The largest gain appears in METEOR (+1.83), indicating
enhanced semantic alignment and paraphrase understanding, both
of which rely on holistic code comprehension. The bidirectional en-
coder benefits from modeling human-like focus over the entire code
context without causal masking, explaining its strong performance
on semantic metrics.

These results suggest that human attention patterns encode
architecture-invariant cues of semantic importance. Regardless of
whether information is processed autoregressively or bidirection-
ally, guiding attention toward regions that typically attract human
gaze helps redistribute representational focus more effectively. The
multimodal Gaussian formulation accommodates these differences
without architectural redesign, demonstrating EyeLayer’s flexibility
and generalizability as a cognitively grounded attention module.

RQ3 Summary. EyeLayer generalizes well to encoder-only
models, confirming that human attention patterns provide
architecture-invariant cues for semantic importance and sup-
port flexible attention redistribution.

871

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Table 2: CodeBERT performance with and without EyeLayer integration.

Model | BLEU-4

ROUGE-L

METEOR BERTScore

CodeBERT 14.35
CodeBERT + EyeLayer | 15.39 (+1.04)

29.16 21.87 87.69
30.70 (+1.54)

23.70 (+1.83) 88.30 (+0.61)

5.4 RQ4: Ablation Study on Multimodal Design

RQ4 investigates whether the multimodal Gaussian design, which
models human attention through multiple distinct modes, provides
advantages over simpler single mode alternatives.

To isolate the multimodal design’s contribution, we implement
a simplified EyeLayer variant that predicts attention using a sin-
gle Gaussian distribution rather than a mixture. This architecture
removes the sparse gating network and mode-specific prediction
heads, and instead directly predicts the global centroid p and spread
o from the code-level embedding, while retaining all other compo-
nents, including low-rank perturbation, attention-guided weighting,
and adaptive highway gating. We evaluate single-mode EyeLayer
at early and late layer positions on Llama3.2-1B-instruct.

Table 3 shows that multimodal EyeLayer consistently outper-
forms single-mode variants across all metrics. Single-mode con-
figurations show limited improvements over baseline, with early
layer achieving minimal gains and late layer showing inconsistent
performance. In contrast, multimodal EyeLayer delivers substan-
tial improvements. For example, at layer 13, multimodal design
achieves BLEU-4: 16.18 versus single-mode’s 14.63 (+1.55), and ME-
TEOR: 29.33 versus 26.10 (+3.23), demonstrating clear advantages
of modeling multiple attention modes.

The results support our hypothesis that human attention during
code comprehension cannot be captured by a single Gaussian. A
single-mode design can only represent one attention region, which
forces a trade-off between narrow focus (small o) and broad cov-
erage (large o), and thus fails to model multiple distinct areas of
interest in complex functions. In contrast, the multimodal design
enables sparse mode selection, where the gating network activates
1-3 modes adaptively based on code complexity. This allows the
model to compose multiple attention patterns, such as scanning
function signatures, following control flow, and inspecting imple-
mentation details. The substantial performance gains indicate that
modeling diverse attention modes improves cognitive fidelity and
justifies the added architectural complexity.

RQ4 Summary. Multimodal Gaussian design outperforms
single-mode variants, demonstrating that modeling multiple
attention modes better captures human gaze diversity and
yields stronger semantic alignment.

6 Threats to Validity

There are two main threats to the validity of our work. First, our
eye-tracking supervision derives exclusively from Java code compre-
hension, which may limit generalization to languages with different
syntactic structures or paradigms. However, core code comprehen-
sion strategies are similar across languages. This implies that human
attention patterns reflecting semantic importance may also transfer,

but further validation is needed for EyeLayer across diverse pro-
gramming languages. Second, our evaluation relies on automatic
metrics that may not fully correlate with human-perceived sum-
mary quality or practical developer productivity in real-world sce-
narios. We mitigate this threat by employing four complementary
metrics (BLEU, ROUGE-L, METEOR, BERTScore) spanning lexical
overlap and semantic similarity dimensions, validating across di-
verse model architectures (decoder-only and encoder-only), and
conducting qualitative analysis demonstrating meaningful seman-
tic improvements in generated summaries. All experiments used
fixed random seeds to ensure reproducibility and minimize bias.

7 Discussion and Future Work

Scaling Eye-Tracking Supervision. Our results show that 625
sparse eye-tracking samples provide consistent benefits, suggesting
that scaling supervision through data augmentation or large-scale
collection could further improve performance. Richer supervision
would enable more expressive EyeLayer architectures capturing
finer-grained attention patterns.

Richer Cognitive Signals. Our approach uses only static fixa-
tion—aggregated attention intensity. Eye-tracking can contain addi-
tional information: saccade patterns (revealing information-seeking
strategies), and attention switches (capturing dynamic shifts in cog-
nitive focus). Incorporating these temporal and sequential signals
has the potential to provide richer supervision.

Generalization to Software Engineering Tasks. While we
focus on code summarization, many SE tasks fundamentally involve
code comprehension: bug localization, code review, and program
repair all require identifying semantically important regions. Hu-
man attention patterns should transfer across tasks as developers
employ similar cognitive strategies regardless of end goal. Eye-
Layer’s effectiveness across both decoder-only and encoder-only
architectures demonstrates its flexibility for integration into diverse
models. However, future work should investigate whether atten-
tion patterns from code summarization tasks can transfer to other
SE contexts, or whether collecting task-specific eye-tracking data
yields stronger supervision signals.

Broader Implications. Beyond performance improvements,
EyeLayer demonstrates grounding neural models in human cog-
nitive processes rather than purely data-driven learning. This ap-
proach could enable more interpretable Al systems where models
attend to code for reasons aligned with human reasoning, facilitat-
ing developer trust and effective human-AI collaboration as code
intelligence tools become ubiquitous in development workflows.

8 Related Work

This section situates our work at the intersection of human-centered
Al and automatic code summarization. We first review research that

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Anon.

Table 3: Ablation study comparing single-mode and multimodal EyeLayer designs on Llama3.2-1B.

‘BLEU-4 ROUGE-L METEOR BERTScore

Configuration

Baseline (SFT) 14.31
Single-mode (Early) 14.30
Single-mode (Late) 14.63
Multimodal (Late) 16.18

22.12 27.45 87.55
21.64 27.55 88.13
20.82 26.10 88.26
23.51 29.33 88.51

integrates cognitive and behavioral signals into software engineer-
ing models, emphasizing eye-tracking as a bridge between human
and machine attention. We then discuss advances in code sum-
marization, from transformer-based architectures to recent efforts
incorporating human-like attention guidance.

8.1 Human-centered Al for Software
Engineering

Human-centered Al for software engineering (SE) emphasizes align-
ing automated systems with human cognition and developer work-
flows. Empirical studies have shown that developers interact with
Al assistants in complex ways: they often exhibit overconfidence
while producing less secure code [36], alternate between accelera-
tion and exploration modes depending on task certainty [6], and
face persistent challenges in output validation and trust calibra-
tion [15, 26, 30]. Recent theoretical frameworks further characterize
trust as a dynamic and multi-dimensional construct [9, 38], under-
scoring the need for models that are cognitively transparent and
behaviorally adaptive.

Beyond behavioral analysis, recent research has sought to di-
rectly model cognitive processes underlying code comprehension.
Early eye-tracking studies revealed that developer gaze patterns
reflect semantic understanding during program reading [34, 37].
Building on this foundation, Bansal et al. [5] and Alakmeh et al. [2]
predicted human attention from code structure and integrated gaze
information to enhance summarization models. More recently, Eye-
Trans [55] and EyeMulator [54] incorporated gaze data into Trans-
former architectures, achieving measurable performance gains.

EyeLayer extends this research direction by being among the first
to incorporate human cognitive signals into large language models.
It leverages human attention as a transferable probabilistic prior,
aiming for generalizable integration of human-like focus patterns
across model architectures and tasks.

8.2 Automatic Code Summarization

The advent of large language models (LLMs) has catalyzed a para-
digm shift in automatic code summarization, transitioning from tra-
ditional sequence-to-sequence architectures to transformer-based
approaches that leverage extensive pre-training on code corpora.
Early work such as Code2Seq [3] and retrieval-augmented meth-
ods [51] demonstrated that structural program representations and
example-based retrieval can significantly enhance summary qual-
ity. The establishment of benchmarks like CodeXGLUE [28] stan-
dardized evaluation protocols and enabled systematic comparison
across models and datasets. Building on these foundations, Shi et
al. [43] identified key factors influencing neural summarization
performance, while Gao et al. [16] and Fang et al. [12] explored

10

in-context and prompt-based learning to adapt general-purpose
LLMs for code summarization. Empirical studies further revealed
that moderately sized, fine-tuned models can rival or surpass much
larger general-purpose LLMs when supervision effectively captures
task semantics [46], emphasizing the centrality of the fine-tuning
process in code-oriented adaptation.

Recent work has focused on improving efficiency, robustness,
and interpretability in LLM-based summarization [46]. Su et al. [45]
applied knowledge distillation to reduce computational costs, while
Mastropaolo et al. [31] proposed semantic-aware evaluation metrics
to better assess summary fidelity. Virk et al. [47] exposed calibration
deficiencies that undermine model reliability, and Mondal et al. [33]
examined robustness to adversarial perturbations. Interpretability
analyses further uncovered a persistent misalignment between
model-generated attention and developer comprehension: Li et
al. [25] showed that neural attention often diverges from code
regions developers focus on, leading to summaries that are lexically
fluent but semantically incomplete. This gap between surface-level
correlations and true comprehension has motivated recent studies
to augment fine-tuning with auxiliary behavioral cues such as eye-
tracking, exemplified by EyeTrans [55], which guide transformer
attention toward semantically salient regions.

EyeLayer continues this trajectory by strengthening the super-
vised fine-tuning of LLM-based summarization. Rather than re-
designing model architectures or relying on heavy supervision, it
introduces lightweight cognitive priors into the fine-tuning pipeline
to steer attention toward functionally important code regions.

9 Conclusion

This work demonstrates that human cognitive patterns captured
through eye-tracking can effectively enhance LLM-based code
summarization. We introduced EyeLayer, a lightweight attention-
augmentation module that integrates sparse human attention sig-
nals into LLMs through Multimodal Gaussian Mixture Models, en-
abling models to learn how developers naturally focus on semanti-
cally critical code regions during comprehension. Our evaluation
across five models spanning different scales and architectures shows
consistent improvements, validating that human expertise provides
complementary signals that enhance LLM capabilities beyond what
standard supervised fine-tuning achieves. Our methodology estab-
lishes a framework for incorporating human cognitive processes
into LLMs for code comprehension, contributing to the develop-
ment of more capable and interpretable developer tools as software
systems continue to grow in complexity.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145

1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

EyeLayer: Integrating Human Attention Patterns into LLM-Based Code Summarization

References

(1]

(2]

3

=

=

[9

=

[10

[11]

=
&

[13]

[14]

[15]

=
&

[17

[18]

[19]

[20]

[21]

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.
A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics (ACL).
Tarek Alakmeh, David Reich, Lena Jager, and Thomas Fritz. 2024. Predicting
Code Comprehension: A Novel Approach to Align Human Gaze with Code Using
Deep Neural Networks. Proceedings of the ACM on Software Engineering 1, FSE
(July 2024), 1982-2004. doi:10.1145/3660795

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. arXiv:1808.01400 [cs.LG]
https://arxiv.org/abs/1808.01400

Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. In Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, Jade Goldstein, Alon Lavie, Chin-Yew Lin,
and Clare Voss (Eds.). Association for Computational Linguistics, Ann Arbor,
Michigan, 65-72.

Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards Modeling
Human Attention from Eye Movements for Neural Source Code Summarization.
Proceedings of the ACM on Human-Computer Interaction 7, ETRA (May 2023),
1-19. doi:10.1145/3591136

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-Generating Models. doi:10.
48550/arXiv.2206.15000

Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pa-
terson, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Move-
ments in Code Reading: Relaxing the Linear Order. In 2015 IEEE 23rd Inter-
national Conference on Program Comprehension. IEEE, Florence, Italy, 255-265.
doi:10.1109/ICPC.2015.36

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. 2015. Attention-Based Models for Speech Recognition. In Ad-
vances in Neural Information Processing Systems, Vol. 28. Curran Associates, Inc.
Rudrajit Choudhuri, Bianca Trinkenreich, Rahul Pandita, Eirini Kalliamvakou,
Igor Steinmacher, Marco Gerosa, Christopher Sanchez, and Anita Sarma. 2024.
What Guides Our Choices? Modeling Developers’ Trust and Behavioral Inten-
tions towards GenAlI. doi:10.48550/arXiv.2409.04099

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. 2019. On the
Relationship between Self-Attention and Convolutional Layers. In International
Conference on Learning Representations.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engi-
neering: Survey and Open Problems. In 2023 IEEE/ACM International Confer-
ence on Software Engineering: Future of Software Engineering (ICSE-FoSE). 31-53.
doi:10.1109/ICSE-FoSE59343.2023.00008

Minying Fang, Xing Yuan, Yuying Li, Haojie Li, Chunrong Fang, and Junwei
Du. 2025. Enhanced Prompting Framework for Code Summarization with Large
Language Models. Proc. ACM Softw. Eng. 2, ISSTA, Article ISSTA072 (June 2025),
24 pages. doi:10.1145/3728949

Harshwardhan Fartale, Ashish Kattamuri, Rahul Raja, Arpita Vats, Ishita Prasad,
and Akshata Kishore Moharir. 2025. Disentangling Recall and Reasoning in
Transformer Models through Layer-Wise Attention and Activation Analysis.
doi:10.48550/arXiv.2510.03366

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages.

Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, Jiaxin Yu, and
Jinfu Chen. 2025. Security Weaknesses of Copilot-Generated Code in GitHub
Projects: An Empirical Study. doi:10.48550/arXiv.2310.02059

Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R. Lyu. 2023. What Makes Good In-Context Demonstrations for Code
Intelligence Tasks with LLMs?. In 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 761-773. doi:10.1109/ase56229.
2023.00109

Lisa Grabinger, Florian Hauser, Christian Wolff, and Jurgen Mottok. 2024. On
Eye Tracking in Software Engineering. SN Computer Science 5, 6 (July 2024), 729.
doi:10.1007/s42979-024-03045-3

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, and et al. 2024.
The Llama 3 Herd of Models. doi:10.48550/arXiv.2407.21783

Alex Graves. 2014. Generating Sequences With Recurrent Neural Networks.
doi:10.48550/arXiv.1308.0850

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. 2015. DRAW: A Recurrent Neural Network For Image Generation.
doi:10.48550/arXiv.1502.04623

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for
Software Engineering: A Systematic Literature Review. arXiv:2308.10620 [cs.SE]

11

[22]

[23

[24

[26]

[27]

(28]

[29

(30]

(31]

(32

[33

[34

[35

(36]

[37

[38

[39

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

https://arxiv.org/abs/2308.10620

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

Marcel Adam Just and Patricia A Carpenter. [n.d.]. A Theory of Reading: From
Eye Fixations to Comprehension. ([n. d.]).

Zachary Karas, Aakash Bansal, Yifan Zhang, Toby Li, Collin McMillan, and Yu
Huang. 2024. A Tale of Two Comprehensions? Analyzing Student Programmer
Attention during Code Summarization. ACM Trans. Softw. Eng. Methodol. 33, 7,
Article 193 (Aug. 2024), 37 pages. doi:10.1145/3664808

Jiliang Li, Yifan Zhang, Zachary Karas, Collin McMillan, Kevin Leach, and Yu
Huang. 2024. Do Machines and Humans Focus on Similar Code? Exploring Ex-
plainability of Large Language Models in Code Summarization. In Proceedings of
the 32nd IEEE/ACM International Conference on Program Comprehension (Lisbon,
Portugal) (ICPC °24). Association for Computing Machinery, New York, NY, USA,
47-51. doi:10.1145/3643916.3644434

Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2023. A Large-Scale Survey
on the Usability of AI Programming Assistants: Successes and Challenges. doi:10.
48550/arXiv.2303.17125

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74-81.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
A Machine Learning Benchmark Dataset for Code Understanding and Generation.
(2021). arXiv:2102.04664 [cs.SE] https://arxiv.org/abs/2102.04664

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. CoRR abs/2102.04664 (2021).

Yunbo Lyu, Zhou Yang, Jieke Shi, Jianming Chang, Yue Liu, and David Lo. 2025.
"my Productivity Is Boosted, but .." Demystifying Users’ Perception on Al Coding
Assistants. doi:10.48550/arXiv.2508.12285

Antonio Mastropaolo, Matteo Ciniselli, Massimiliano Di Penta, and Gabriele
Bavota. 2024. Evaluating Code Summarization Techniques: A New Metric and
an Empirical Characterization. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (Lisbon, Portugal) (ICSE "24). Association for
Computing Machinery, New York, NY, USA, Article 218, 13 pages. doi:10.1145/
3597503.3639174

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2025. Talking Heads: Un-
derstanding Inter-Layer Communication in Transformer Language Models.
d0i:10.48550/arXiv.2406.09519

Debanjan Mondal, Abhilasha Lodha, Ankita Sahoo, and Beena Kumari. 2023. Ro-
bust Code Summarization. In Proceedings of the 1st GenBench Workshop on (Bench-
marking) Generalisation in NLP, Dieuwke Hupkes, Verna Dankers, Khuyagbaatar
Batsuren, Koustuv Sinha, Amirhossein Kazemnejad, Christos Christodoulopou-
los, Ryan Cotterell, and Elia Bruni (Eds.). Association for Computational Linguis-
tics, Singapore, 65-75. doi:10.18653/v1/2023.genbench-1.5

Matteo Paltenghi and Michael Pradel. 2021. Thinking like a Developer? Com-
paring the Attention of Humans with Neural Models of Code. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, Melbourne, Australia, 867-879. doi:10.1109/ase51524.2021.9678712
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu:
A Method for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Pierre
Isabelle, Eugene Charniak, and Dekang Lin (Eds.). Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, 311-318. doi:10.3115/1073083.
1073135

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do Users
Write More Insecure Code with Al Assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. ACM, Copen-
hagen Denmark, 2785-2799. doi:10.1145/3576915.3623157

Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sid-
ney D’Mello. 2014. Improving Automated Source Code Summarization via
an Eye-Tracking Study of Programmers. In Proceedings of the 36th Interna-
tional Conference on Software Engineering. ACM, Hyderabad India, 390-401.
doi:10.1145/2568225.2568247

Sadra Sabouri, Philipp Eibl, Xinyi Zhou, Morteza Ziyadi, Nenad Medvidovic,
Lars Lindemann, and Souti Chattopadhyay. 2025. Trust Dynamics in Al-assisted
Development: Definitions, Factors, and Implications. In 2025 IEEE/ACM 47th In-
ternational Conference on Software Engineering (ICSE). IEEE, Ottawa, ON, Canada,
1678-1690. doi:10.1109/ICSE55347.2025.00199

Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaél Guéhéneuc. 2015.
Eye-Tracking Metrics in Software Engineering. In 2015 Asia-Pacific Software

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

https://doi.org/10.1145/3660795
https://arxiv.org/abs/1808.01400
https://arxiv.org/abs/1808.01400
https://doi.org/10.1145/3591136
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.48550/arXiv.2409.04099
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1145/3728949
https://doi.org/10.48550/arXiv.2510.03366
https://doi.org/10.48550/arXiv.2310.02059
https://doi.org/10.1109/ase56229.2023.00109
https://doi.org/10.1109/ase56229.2023.00109
https://doi.org/10.1007/s42979-024-03045-3
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1502.04623
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://doi.org/10.1145/3664808
https://doi.org/10.1145/3643916.3644434
https://doi.org/10.48550/arXiv.2303.17125
https://doi.org/10.48550/arXiv.2303.17125
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://doi.org/10.48550/arXiv.2508.12285
https://doi.org/10.1145/3597503.3639174
https://doi.org/10.1145/3597503.3639174
https://doi.org/10.48550/arXiv.2406.09519
https://doi.org/10.18653/v1/2023.genbench-1.5
https://doi.org/10.1109/ase51524.2021.9678712
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1109/ICSE55347.2025.00199

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

[40]

[41]

[44]

[45]

[46]

[47]

[48]

Engineering Conference (APSEC). 96-103. doi:10.1109/APSEC.2015.53

Zohreh Sharafi, Bonita Sharif, Yann-Gaél Guéhéneuc, Andrew Begel, Roman
Bednarik, and Martha Crosby. 2020. A Practical Guide on Conducting Eye
Tracking Studies in Software Engineering. Empirical Software Engineering 25, 5
(Sept. 2020), 3128-3174. doi:10.1007/s10664-020-09829-4

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaél Guéhéneuc. 2015. A Systematic
Literature Review on the Usage of Eye-Tracking in Software Engineering. In-
formation and Software Technology 67 (Nov. 2015), 79-107. doi:10.1016/j.infsof.
2015.06.008

Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and Under_score Identifier Styles. In 2010 IEEE 18th International Conference on
Program Comprehension. 196-205. doi:10.1109/ICPC.2010.41

Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-
mei Zhang, and Hongbin Sun. 2022. On the evaluation of neural code summariza-
tion. In Proceedings of the 44th International Conference on Software Engineering.
ACM, 1597-1608. doi:10.1145/3510003.3510060

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun,
and Ravid Shwartz-Ziv. 2025. Layer by Layer: Uncovering Hidden Representa-
tions in Language Models. doi:10.48550/arXiv.2502.02013

Chia-Yi Su and Collin McMillan. 2024. Distilled GPT for source code summariza-
tion. Automated Software Engg. 31, 1 (March 2024), 26 pages. doi:10.1007/s10515-
024-00421-4

Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang, Chunrong Fang, Yi Liu,
Gelei Deng, Yang Liu, and Zhenyu Chen. 2025. Source Code Summarization in
the Era of Large Language Models. arXiv:2407.07959 [cs.SE] https://arxiv.org/
abs/2407.07959

Yuvraj Virk, Premkumar Devanbu, and Toufique Ahmed. 2025. Calibration of
Large Language Models on Code Summarization. Proc. ACM Softw. Eng. 2, FSE,
Article FSE130 (June 2025), 21 pages. doi:10.1145/3729400

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng,
Bowen Yu, and et al. 2025. Qwen3 Technical Report. doi:10.48550/arXiv.2505.

12

[49]

[50

(51]

[52

[53

[54

o
2

Anon.

09388

Weigiu You, Simeng Sun, and Mohit Iyyer. 2020. Hard-Coded Gaussian Attention
for Neural Machine Translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics,
Online, 7689-7700. do0i:10.18653/v1/2020.acl-main.687

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,
and Chelsea Finn. 2020. Gradient Surgery for Multi-Task Learning. doi:10.48550/
arXiv.2001.06782

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE "20). Association for Computing Machinery, New York, NY, USA,
1385-1397. doi:10.1145/3377811.3380383

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi.
2020. BERTScore: Evaluating Text Generation with BERT. doi:10.48550/arXiv.
1904.09675

Yang Zhang, Yanfei Dong, and Kenji Kawaguchi. 2024. Investigating Layer
Importance in Large Language Models. In Proceedings of the 7th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Networks for NLP. Association for
Computational Linguistics, Miami, Florida, US, 469-479. doi:10.18653/v1/2024.
blackboxnlp-1.29

Yifan Zhang, Chen Huang, Yueke Zhang, Jiahao Zhang, Toby Jia-Jun Li, Collin
McMillan, Kevin Leach, and Yu Huang. 2025. EyeMulator: Improving Code
Language Models by Mimicking Human Visual Attention. doi:10.48550/arXiv.
2508.16771

Yifan Zhang, Jiliang Li, Zachary Karas, Aakash Bansal, Toby Jia-Jun Li, Collin
McMillan, Kevin Leach, and Yu Huang. 2024. EyeTrans: Merging Human and
Machine Attention for Neural Code Summarization. Proceedings of the ACM on
Software Engineering 1, FSE (July 2024), 115-136. doi:10.1145/3643732

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

https://doi.org/10.1109/APSEC.2015.53
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.48550/arXiv.2502.02013
https://doi.org/10.1007/s10515-024-00421-4
https://doi.org/10.1007/s10515-024-00421-4
https://arxiv.org/abs/2407.07959
https://arxiv.org/abs/2407.07959
https://arxiv.org/abs/2407.07959
https://doi.org/10.1145/3729400
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.18653/v1/2020.acl-main.687
https://doi.org/10.48550/arXiv.2001.06782
https://doi.org/10.48550/arXiv.2001.06782
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://doi.org/10.18653/v1/2024.blackboxnlp-1.29
https://doi.org/10.48550/arXiv.2508.16771
https://doi.org/10.48550/arXiv.2508.16771
https://doi.org/10.1145/3643732

	Abstract
	1 Introduction
	2 Background
	2.1 Eye-tracking for Program Comprehension
	2.2 Probabilistic Attention and Cognitive Priors

	3 Methodology
	3.1 Datasets and Preprocessing
	3.2 Multimodal Gaussian EyeLayer
	3.3 Causal-Aware Attention Redistribution
	3.4 Model Integration
	3.5 Joint Training

	4 Experimental Setup
	4.1 Datasets
	4.2 Models and Training Infrastructure
	4.3 Evaluation Metrics

	5 Experimental Results and Analysis
	5.1 RQ1: Effectiveness Compared to SFT
	5.2 RQ2: Effect of EyeLayer Insertion Position
	5.3 RQ3: Generalization to Encoder-Only Architectures
	5.4 RQ4: Ablation Study on Multimodal Design

	6 Threats to Validity
	7 Discussion and Future Work
	8 Related Work
	8.1 Human-centered AI for Software Engineering
	8.2 Automatic Code Summarization

	9 Conclusion
	References

