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ABSTRACT

Regular expression Denial of Service (ReDoS) represents an algo-
rithmic complexity attack that exploits the processing of regular
expressions (regexes) to produce a denial-of-service attack. This
attack manifests when regex evaluation time scales polynomially
or exponentially with input length, posing sporadic yet significant
challenges for software developers. The advent of Large Language
Models (LLMs) has revolutionized the generation of regexes from
natural language prompts, but not without its risks. Prior works
showed that LLMs can generate code with vulnerabilities and secu-
rity smells. In this paper, we synthesized a vast collection of regex
patterns from a comprehensive dataset, assessing their correct-
ness and ReDoS vulnerability. We investigated the characteristics
of these vulnerable regexes, categorizing them into equivalence
classes to unravel their weaknesses. Our study also examined ReDoS
patterns in actual software projects, aligning them with correspond-
ing regex classes. Moreover, we analyzed developer dialogues on
GitHub and StackOverflow, constructing a taxonomy to investigate
their experiences and perspectives on ReDoS. In this study, we
found that GPT-3.5 was the best LLM to generate regexes that are
both correct and secure. We observed that LLM-generated regexes
mainly have polynomial ReDoS vulnerability patterns, and it is
consistent with the real-world data. We also found that developers’
main concern is related to mitigation strategies to remove vulnera-
ble regexes.

CCS CONCEPTS

• Software and its engineering → State based definitions; • Secu-
rity and privacy → Denial-of-service attacks; • Computing

methodologies→Multi-task learning.
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1 INTRODUCTION

Regular expressions (“regexes”) feature in 30-40% of software projects
for tasks like pattern matching [16, 22]. Although regexes are useful
for various tasks, they can be a source of denial-of-service attacks
(ReDoS) caused by catastrophic backtracking [22]. This vulnerability
is caused by a regex engine taking too long to process an input
string, making the software system unresponsive [20, 57]. For ex-
ample, the exploitation of a ReDoS vulnerability caused service
disruption at StackOverflow in 2016 [10].

While a non-vulnerable regex can be hard to maintain and have
readability issues [16, 25, 36, 56], ReDoS-vulnerable regexes can
be more problematic to understand, and that makes it hard to de-
tect and repair them by the developers [33]. The complexity of
ReDoS-vulnerable regexes further exacerbates this issue, as many
developers are not fully aware of the associated security risks. In
fact, a recent study showed that only 38% of all surveyed developers
knew about regular expression denial of service [36].

Although prior works focused on studying [22, 36], detecting [31,
50], or repairing [32] regular expression denial-of-service (ReDoS)
vulnerabilities, we are at the verge of a new threat: with the recent
release of GitHub Copilot [1] and ChatGPT [2], the reliance on
AI assistants for software development is concerning, particularly
because they can generate insecure code [42, 44, 52, 54, 64, 65]. A
recent survey with 500 US-based developers who work for large-
sized companies showed that 92% of them are using AI coding
tools both for work and personal use [49]. Part of this fast wide-
spread adoption is due to the increased productivity perceived by
developers [43, 72].

As code generation tools become widely used during software
development, there is a risk that developers will blindly trust the
output of the AI assistants, which may inadvertently introduce
ReDoS-vulnerable regexes in a software system. Since developers
are unaware of the security risks of regexes [36], they may focus
on checking whether the regex is functionally correct (i.e., passes
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the test cases) but be oblivious to the fact the generated regex is
vulnerable to denial-of-service attacks.

In light of this threat, in our work, we investigate to what extent
LLMs are able to generate regexes that are both functionally correct
and secure. We also study howReDoS-vulnerable regexes are hard to
understand, how similar LLM-generated regexes are to real-world
vulnerabilities, and what types of concerns & questions developers
have related to ReDoS. To our knowledge, this is the first study
to focus on ReDoS comprehension from a dual perspective: the
efficacy of LLMs in generating regex patterns and their susceptibil-
ity to ReDoS attacks, alongside the developers’ understanding and
discussions of these vulnerabilities.

The contributions of this paper are:

- We investigated 274,320 regexes1 generated using a combination
of prompt types, model temperatures, and samples, evaluating
them for correctness and proneness to ReDoS attacks (RQ1).

- We studied the pattern classification of the ReDoS-vulnerable
regexes detected by Li et al. [31] and manually analyzed them,
mapping each to its corresponding regex class, as defined in
Chapman et al. [17], for better understanding (RQ2).

- We studied ReDoS from real-world software systems and analyzed
their corresponding ReDoS patterns and regex classes (RQ3) in
order to contrast whether LLM-generated vulnerable regexes
have similar characteristics to developer-written ones.

- We mined around 500 GitHub Pull Requests and StackOverflow
posts about ReDoS to understand what concerns developers have
related to regular expressions. We created a taxonomy based on
the developers’ discussion about ReDoS in the open forum (RQ4).

- A replication package with all the scripts used to gather the data
and compile all the results2.

2 BACKGROUND

2.1 Insecure Regular Expressions

Some regex patterns combined with specific input strings can cause
what the literature named as catastrophic backtracking [22].
This issue arises when the underlying engine performing the string
matching takes a long time to determine whether the string will
match the patterns specified in the regex. The root cause for the
execution delay is the extensive permutations and combinations
the regex engine must check to determine a match.

Figure 1: NFA for the regex ^(a+)+$

For example, consider the regex ^(a+)+$, whose Nondeterministic
Finite Automaton (NFA) is shown in Figure 1. For the input 'aaaaX',
the NFA has 16 potential pathways [66]. However, for the input
'aaaaaaaaaaaaaaaaX', the number of potential pathways is 65,536
(it doubles for each additional 'a'). When an input does not match,
the engine retreats to earlier junctures at which it could opt for an

12 Prompt types × 6 Temperature settings × 3 LLMs × 762 Prompts × 10 Outputs
2https://github.com/s2e-lab/redos-study

alternate route. The engine persistently attempts this until it has
exhausted all possible pathways. This causes very high CPU usage,
leading to denial of service [4].

ReDoS Patterns. There are five common patterns that represent a
different way in which a regex can be exploited to cause service
disruption [31]. These patterns are: Nested Quantifiers (NQ)
(i.e., patterns with quantifiers placed within other quantifiers, e.g.,
^(a+)+$), Exponential Overlapping Disjunction (EOD) (i.e.,
patterns with alternatives in a regex that share common substrings,
e.g., ^(a+|a?)+$), Exponential Overlapping Adjacency (EOA)
(i.e., patternswith adjacent elements that can bematched inmultiple
overlapping ways due to a shared quantifier, e.g., ^(a+)+b$), Poly-
nomial Overlapping Adjacency (POA) (i.e., patterns where ad-
jacent elements share an optional quantifier, e.g., ^(a?)+a{100}$),
and Starting with LargeQuantifier (SLQ) (i.e., patterns begin-
ning with a large quantifier that forces the regex engine to try many
starting positions in the input string, e.g., ^a{100,}b).

2.2 Regex Equivalence Class Groups

Regex Equivalence Class Groups provide a systematic approach
to categorize regexes based on their behavior [16]. These groups are
formed by classifying behaviorally equivalent regexes into the same
class. This behavioral equivalence means that while the regexes
may have different syntax, they fulfill the same function in terms
of pattern matching. As shown in Table 1, regexes can be classified
into five main equivalence class groups based on their functional
characteristics: Custom Character Class Group (CCC), Double-
Bounded Group (DBB), Literal Group (LIT), Lower-Bounded
Group (LWB), and Single-Bounded Group (SNG). Understand-
ing these equivalence classes is not merely academic; it has practical
implications in writing and optimizing regexes. By recognizing that
certain complex patterns can be simplified into more straightfor-
ward, equivalent forms, developers can write more readable and
maintainable code. Furthermore, identifying commonly used pat-
terns through equivalence classes can inform better practices, as
these are likely to be more recognizable to other programmers and,
thus, more easily understood [17].

Table 1: Regex Equivalence Classes [17]

C
C
C

C1 Patterns with a range in a custom character class (e.g., [2-6]).
C2 Patterns with custom character classes without shorthand notation, e.g., [abc].
C3 Patterns employing negation within custom character classes, e.g., [^eiu].
C4 Patterns that use default character classes within custom classes, e.g., [\w\s].
C5 Patterns that uses OR sequences as custom classes, converting (x|y|z) into [xyz].

D
B
B

D1 Patterns that define a non-equal range of repetitions, e.g., h{2,5}.
D2 Patterns that use ? to denote an optional character, which is effectively a double-bound of

zero or one occurrence (e.g., https?).
D3 Patterns that express bounded repetitions through ORs, e.g., (b|bb|bbb).

L
I
T

T1 Patterns featuring at least one literal character, e.g., abc.
T2 Patterns that use hexadecimal tokens, e.g., \x41\x42\x43 instead of "ABC".
T3 Patterns that use literal characters within brackets to obviate the need for escape characters,

e.g., [\.].
T4 Patterns using octal tokens, e.g., \101\102\103 to match "ABC"

L
W

B

L1 Patterns using the curly brace notation for specifying only a lower bound, e.g., z{3,}.
L2 Patterns that include the Kleene star (e.g., 9*), which denotes zero or more repetitions.
L3 Patterns that use the plus sign to indicate a minimum of one occurrence, e.g., 1+ to match a

string of ’1’s.

S
N
G

S1 Patterns with a singular repetition boundary, e.g., d{4}.
S2 Patterns that are explicitly repeated, transformable to xy{3} from xyxyxy.
S3 Patterns with identical upper and lower bounds, with a{2,2} reducing to 'aa'.

https://github.com/s2e-lab/redos-study
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3 METHODOLOGY

In this study, we answer four research questions:

RQ1 To what extent LLMs can generate non-vulnerable and
correct regexes?

While prior studies investigated the capabilities of code generation
models in terms of functional correctness and security [37, 39, 42,
54, 55], these studies do not investigate the generation of (insecure)
regular expressions. Therefore, to fill in this research gap, this work
includes an empirical investigation of three code generation models
(GPT3.5, fine-tuned T5 and Phi-1.5) to verify how well they can
generate secure and correct regexes.

RQ2 What are the characteristics of LLM-generated ReDoS
vulnerabilities?

Chapman et al. [17] developed a taxonomy of regex classes (Table 1)
and studied their understandability by developers. We extend this
study for LLM-generated RegExes and, more specifically, for the
ReDoS vulnerable regexes. If regular expressions are more under-
standable [17], then developers might have a better comprehension
of potential ReDoS vulnerabilities. In RQ2, we investigate the char-
acteristics of the generated vulnerable regexes with respect to their
equivalence class and ReDoS pattern type.

RQ3 What are the characteristics of real-world ReDoS vulner-
abilities that were fixed?

In this question, we investigate whether the distribution of features
is similar between LLM-generated regexes and developer-written
vulnerable regexes that were fixed.

RQ4 How are ReDoS discussed by developers?

While understanding the intrinsic factors of LLMs that may lead to
ReDoS vulnerabilities is crucial, it is equally important to compre-
hend the external perspective: how the wider developer community
perceives, understands, and discusses ReDoS issues [59]. Thus, we
investigate the most common questions or concerns raised by devel-
opers related to ReDoS posted in community forums. Specifically,
we analyzed questions posted on StackOverflow3, a popular Q&A
platform, and on pull requests on GitHub repositories.

3.1 RQ1: ReDoS generation

During inference (i.e., code generation), an LLM is provided with
inputs (prompts) and configured with inference parameters (e.g.,
temperature). Each of these can be a contributing factor to (insecure)
regex generation. Thus, this work conducts an ablation study to
relate correct/insecure regexes to prompts and inference parameters.
In this study, each factor is investigated in isolation using three
LLMs: GPT-3.5-Turbo [5], T5 [45], and Phi-1.5 [30]. We chose
these LLMs because each of them has been used by several prior
works [27, 41, 51, 61, 71] and is representative of decoder-only (or
GPT-style) and encoder-decoder (or Seq2Seq) models. To conduct
this study, we first created a dataset of prompts (§ 3.1.1), used
three LLMs to generate regexes with different inference parameters
(§ 3.1.2), and computed evaluation metrics to correlate prompts and
inference parameters to insecure regex generation (§ 3.1.3).
3https://stackoverflow.com/

3.1.1 Creating a dataset of prompts. Weneeded a dataset of prompts
since existing benchmarks [18, 28, 35] do not evaluate the correct-
ness and security of regular expressions within the generated code.
To create this dataset, we retrieved all the 4,128 regular expres-
sions available on the RegExLib website [8], along with their unique
identifier, description, and test cases (i.e., a list of strings that are
expected to match the regex, and strings that are not expected to
match). We use this library because it contains user-contributed
regular expressions, and it has been used by prior works [29, 70].
Subsequently, we perform a manual validation of each collected
sample to (1) filter out incorrect regexes, (2) create more test cases
(i.e., matching and non-matching string examples), and (3) create
refined problem descriptions (i.e., prompts).

(1) Filtering Regex Samples. We disregarded any retrieved sample
that matched one or more of these conditions: (i) it was missing
any metadata i.e., description, and/or list of expected matches and
non-matches; (ii) its description is not in English; (iii) its descrip-
tion included vulgar words; (iv) its description does not provide
sufficient information to understand the purpose of the regular
expression; (v) it aimed to detect just one word; (vi) it is incorrect
(i.e., the regex matches a string that is not supposed to match, or it
does not match a string that is expected to match). After this step,
we had 1,001 regex samples.

(2) Creating New Test Cases. Each collected regex sample had (on
average) only 4 string examples (2 that are expected matches and 2
that are expected non-matches). Thus, we created additional test
cases to ensure that each prompt had at least 13 matching and
12 non-matching string tests4. We aimed to have a total of 25 in-
put/output pair examples (13 positive, 12 negative), where we could
use 5 of them to be part of the prompt. This way, we increased the
average number of examples from 4 to 25, significantly contributing
to the test cases’ robustness. After creating these additional test
strings, we evaluated the regex with the new set of test cases again
and excluded the failed regex samples, obtaining a total of 762
samples in our final dataset.

(3) Refined Prompt Creation. We observed that some samples lacked
a more detailed explanation (e.g., ID#84: “SQL date format tester.” )
or had unrelated information for generating regex (e.g., ID#4: “...
Other than that, this is just a really really long description of a regular
expression that I’m using to test howmy front page will look in the case
where very long expression descriptions are used”). Thus, we created
a refined prompt with a clear description of the regex, and that
includes three match and two non-match string examples.

These steps were conducted by two of the authors (2-3 years of
experience), and peer-reviewed by a third author (over 10 years
of experience). Less than 2% prompts had disagreements and were
adjusted through discussion. Figure 2 shows an example of a prompt
in our dataset.
3.1.2 Regex Generation. We used three models to answer the RQs.
The Text-to-Text transformer (T5) [45] is an attention-based
encoder-decoder transformer model [63]. In our work, we had a
T5-base model (220 million parameters) fine-tuned with a popular
synthetic dataset for regex generation (KB13 [28]). The Pre-trained
4We could not create at least 13 matches for problems with a strict matching pattern
(e.g., a regex that matches only a vowel character that will have only 5 match examples)
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{"id": 161,
"expression":"[A-Z][a-z]+",
"original_prompt": "This expression was developed to match the Title cased words within
a Camel cased variable name. So it will match 'First' and 'Name' within 'strFirstName'.",
"refined_prompt": "This regular expression matches two or more consecutive letters in a string,
where the first letter is uppercase (A-Z) and the subsequent letters are lowercase (a-z).
- Match examples: \"strFirstName\", \"intAgeInYears\", \"Where the Wild Things Are\"
- Non-match examples: \"123\", \"abc\"",
"matches":["strFirstName", "intAgeInYears", "Where the Wild Things Are", ...],
"non_matches":["123", "abc", ...] }

Figure 2: Example of a regex prompt from our dataset

Phi-1.5 [30] is a language model with 1.3 billion parameters, pri-
marily trained on a highly refined synthetic “textbook-quality”
dataset. The Generative Pre-trained Model (GPT-3) [15] is a
task-agnostic model capable of both understanding and generating
natural language. We used the GPT-3.5-Turbo released on June
2023, which is tuned for chat-style conversation and powers a pop-
ular chat-based question-answering tool, ChatGPT [2]. Unlike the
T5 and Phi-1.5 models, this model is closed source (i.e., data source,
model weight etc. are unknown).

For the fine-tuned T5 model, we gave as input both the original
prompt and the refined prompt for each of the 762 problems in our
dataset. Since the phi-1.5 model is expecting either a Q&A-style,
chat-style, or code-style prompt andGPT-3 models are task-agnostic,
we added an instruction after the prompt to make it clear that we
want the model to generate a regex for the described problem. This
instruction was “<prompt description here>. Generate a regex for this
description:”. In addition to this, for the phi-1.5 model, we added,
at the end of the previous instruction text “Answer:”, to make it a
question-answering prompt. For the Phi-1.5 billion model, we also
had to clear the data after generating the regex because this model
generated an explanation after the regex (delimited by \n\n). Hence,
we removed any text after getting the \n\n delimiter.

We run each model with two prompt types (i.e., the original de-
scription collected from RegExLib and the refined version). In this
ablation study, we vary the temperature from 0 to 1, in 0.2 incre-
ments (i.e., 0.0, 0.2, ..., 1.0). We kept the other parameters with their
default values and instructed all the models to generate 10 regular
expressions with a maximum of 128 tokens for each of the 762
problems in our dataset. We used the Huggingface interface to gen-
erate regexes using the fine-tuned T5 & pre-trained Phi-1.5 and the
OpenAI API for the GPT-3 model.

Managing LLM’s instability: LLMs are non-deterministic by de-
sign [15, 30]. However, the output variability can be controlled using
the temperature inference hyperparameter [5, 15]. Lower tempera-
tures yield more consistent responses, while higher temperatures
increase the diversity of the outputs. To mitigate the threats intro-
duced by this intrinsic non-determinism in LLMs, we followed the
guidelines outlined by Sallou et al. [47]: (1) we conducted a thor-
ough analysis across a spectrum of temperature settings, ranging
from 0 to 1 in increments of 0.2; (2) At each temperature level, we
generate multiple instances (10 regex patterns) to identify patterns
of consistent output, and (3) we make all prompts and correspond-
ing outputs publicly accessible in our replication package.

3.1.3 Evaluation Metrics. We compile and test all the generated
regexes by using the test cases from our dataset. Consistent with
prior works [31, 69], we used a 60-second timeout when testing the

regexes. Subsequently, we calculated the following metrics to mea-
sure the functional correctness of the generated regexes:

- Exact Match (EM): It measures how many generated regexes
are equal to the solution in our dataset. For example, if 15 out 20
regexes are equal to the reference solution, then EM=75%.

- DFA-EQ@k: Two regexes are semantically equivalent if they have
the same minimal Deterministic Finite Automaton (DFA) [26].
Thus, the DFA-EQ@k measures the percentage of instances in
which there is at least one regex that is semantically equivalent to
the ground truth among the top k produced regexes. For instance,
consider that we have 10 problems, and a model produces 10
regexes for each. If there are 6 problems for which at least one
minimal DFA matched within the top 5 solutions, then the DFA-
EQ@5 score will be 60%. To compute the DFA-EQ@k we used an
implementation from Park et al. [40].

- pass@k: It measures the success rate of finding the correct regex
within the top k options [18]. A regex is considered correct if the
generated regex passes all the test cases in the dataset.

While the above metrics measure whether a regex solves the prob-
lem described in the prompt, they do not evaluate whether the
models produce regexes prone to ReDoS attacks. Thus, we compute
the vulnerable@k metric to quantify the security of the generated
regexes [54], which is defined as follows:

– vulnerable@k: It measures the probability of finding an insecure
regexwithin the top k results [18].We calculated the vulnerable@k
using the source code from Siddiq et al. [54].

In our experiment, we use 𝑘 = 1, 3 and 10 to compute the DFA-EQ@k,
pass@k, and vulnerable@k.

3.2 RQ2: ReDoS Characteristics

In this question, we study the characteristics of the vulnerable
regexes that were generated. We study these from a computa-
tional complexity perspective and a regex comprehension per-
spective.

3.2.1 ReDoS Computational Complexity. As explained in Section 2,
insecure regexes lead to denial-of-service due to catastrophic back-
tracking. The time it takes for the engine to complete depends on
the computational complexity of the vulnerable regex. For example,
nested quantifiers (e.g., (a*)*) and quantifying a disjunction (e.g.,
(a|a)*) can be exponentially dangerous, while concatenated quan-
tifiers (e.g., abc.*def.*) can be polynomially dangerous. Thus, we
investigate the computational complexity of the generated vulnera-
ble regexes. To perform this analysis, we run ReDoSHunter [31]
(with default configuration settings) for all the generated regexes
for the prompts and inference parameters settings in RQ1. Re-
DoSHunter not only detects whether a regex is prone to ReDoS
attacks, but it also reports the computational complexity type of
the regex which are: Nested Quantifiers (NQ), Exponential Overlap-
ping Disjunction (EOD), Exponential Overlapping Adjacency (EOA),
Polynomial Overlapping Adjacency (POA), and Starting with Large
Quantifier (SLQ). We report the computational complexity type
distribution per model, temperature, and prompt setting.
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3.2.2 Regex Classification. To explore how these regular expres-
sions include patterns that are easier/more difficult for developers
to understand, we classify each vulnerable regex according to the
classification scheme described by Chapman et al. [17]. This tax-
onomy identifies regex patterns that are easier/more difficult for
developers to understand. It has five major categories consisting of
sub-categories, as described in Table 1.

To investigate the understandability of the generated regexes, we
perform a stratified random sampling of the generated vulnera-
ble regexes as follows. We first partition the generated insecure
regexes into two sets: those regexes that are derived from the origi-
nal prompts (S1) and those that are from the refined prompts (S2).
Next, we randomly select a statistically significant sample size for
each partition (95% confidence level and 5% margin of error). When
randomly sampling, we keep the proportion to the total number of
insecure regexes for a specific model and temperature combination.
For example, if GPT-3.5-Turbo with temperature setting 0.6 has 100
insecure regexes, whereas GPT-3.5-Turbo with temperature setting
0.4 has 50 insecure regexes, we select twice as many samples from
temperature setting 0.6 than temperature setting 0.4.

For each selected sample, we manually classify them based on the
equivalent (sub-)classes described by Chapman et al. [17]. This clas-
sification is performed by one of the authors, who has over three
years of professional software development experience. We pre-
sented the result from three perspectives: (i) prompt type (original
and refined), (ii) computational complexity type (exponential and
polynomial), and (iii) model (T5, Phi-1.5, and GPT-3.5).

3.3 RQ3: Analyzing real-world ReDoS

We used the dataset from Li et al. [32] that contains 448 vulnerabil-
ities caused by using an insecure regular expression. The dataset
consists of two sources: SOLA-DA is from Staicu, and Pradel [57],
which has 34 samples, and another one is from 70 real-world vul-
nerabilities (CVEs [3]). One CVE can contain multiple vulnerable
regexes. Li et al. [32] extracted 414 ReDoS-vulnerable regexes. Sim-
ilar to RQ2, in this question, we first run ReDoSHunter [31] to find
the ReDoS Computational Complexity. Then, we manually ana-
lyzed them to classify them based on the equivalent (sub-) classes
described by Chapman et al. [17].

After classifying them to the corresponding ReDoS patterns and
regex classes, we did the Mann–Whitney U test [38, 46] to test
for the following hypotheses: (1) the Null hypothesis (𝐻0) is that
the two populations are equal and (2) the alternative hypothesis
(𝐻1) is that the two populations are not equal. We used these non-
parametric tests for significance testing as data from this and the
previous RQ consists of counts (non-normally distributed) for dif-
ferent categories (i.e., ReDoS patterns and Regex classes), and the
sample sizes differ between the two sources.We pair-wise compared
the distribution of ReDoS patterns from different models, prompt
type, and temperature combination with the dataset from Li et al.
[32]. For regex classes, we compared the distribution of vulnerabil-
ity types from both datasets as only this perspective is consistent
in both results. We considered a two-tailed test (i.e., the critical
area of a distribution is two-sided and tests whether a sample is

greater than or less than a certain range of value) and significant
level, 𝛼 = 0.05 for the Mann–Whitney U test.

3.4 RQ4: Developers’ Concerns

To answer RQ4, we used the Stack Overflow API [9] to search
for all posts that contained the words “regex” and “ReDoS” (case-
insensitive search). This search resulted in 151 posts. Similarly,
we used the GitHub API [9] to retrieve all the pull requests that
match all the following conditions (a) it contains the strings “regex”
and “redos” (case insensitive); (b) the pull request has been closed
and (c) it is not done by a bot[11]. With this search, we obtained a
total of 1729 pull requests from GitHub. For each retrieved Stack
Overflow post and GitHub pull request, we conducted a manual
analysis to identify posts that are indeed discussing regex-related
security risks by developers (true positives). Next, we obtained a
total of 48 and 426 true positives from Stack Overflow posts and
GitHub pull requests, respectively.

Subsequently, we performed open coding for all the 474 samples.
During this open coding process, we analyzed each post and pull re-
quest in order to annotate them with concepts (codes). This coding
was performed by the authors of this paper, whose software devel-
opment experience level varied from 3-10 years. After reviewing the
information in the post/pull request, we collaboratively highlighted
the key points. We constantly refined the concepts throughout the
open coding process, leading to the emergence of categories, which
group these concepts based on common themes. The outcome of
this question is a taxonomy of developer concerns with respect to
the security risks of regular expressions.

4 RESULTS

4.1 RQ1: Regex Generation

We evaluated the generated regexes with respect to its functional
correctness (§ 4.1.1) and security (§ 4.1.2).

4.1.1 Functional Correctness.

Exact Match (EM). Figure 3 shows the exact match (EM) distri-
bution for different temperatures, prompt types, and LLMs. We
found that no regex generated from the fine-tuned T5 has an
exact match with the ground truth. GPT-3.5 has the highest exact
match (an average of 24% and 35.8% for the original and refined
prompts, respectively). The Phi-1.5 model had its EM ranging from
0.4% to 2.8% (1.9% average) and 0.4% to 5.2% (2.6% average) for the
original and refined prompts, respectively. On average, the refined
prompts lead to more incidence of exact matches for Phi-1.5 and
GPT-3.5. With respect to temperature performance, there is no clear
best performer. For Phi-1.5, temperatures 0 and 0.4 were the best
performers for the refined and original prompt, respectively. For
GPT-3.5, the best performers for the refined and original prompt,
respectively, were temperatures 0.4 and 0.8.
DFA-EQ@k. Figure 4 shows the DFA-EQ@k for 𝑘 equals 1, 3, and
10. GPT-3.5 performs better than the other LLMs (an average of
11% and 13.8% for the original and refined prompts, respectively)
and the refined prompts have slightly better performance than the
original ones. The Phi-1.5 model is the second best performing one,
with a DFA-EQ@k with an average 3.3% and 2.9% for the original
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Figure 3: Exact Match (EM) for each LLM and temperature.

and refined prompts, respectively. While temperatures 1.0 and 0.8
were the best performing ones for the original prompt for the fine-
tuned T5 and GPT-3.5 models, the same trend was not observed
for the refined prompts.
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Figure 4: DFA-EQ@k for the original and refined prompts

pass@k. Figure 5 shows the pass@1, pass@5, and pass@10 for all
LLMs. Once again, GPT-3.5 is the best-performing LLM. Its per-
formance is better with the temperature increase and the refined
prompts perform better than the original prompts (average of 32% vs.
41%). The fine-tuned T5 is the worst performingmodel, with an av-
erage of 0.1% pass@k for the original and refined prompts.
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Figure 5: pass@k for the original and refined prompts

4.1.2 ReDoS Generation. Figure 6 shows the vulnerable@k (for 𝑘
equals to 1, 3, and 10) for each LLM in different temperature settings.
Recall that, for this metric, the best model is one that has the lowest
vulnerable@k. We found that the fine-tuned T5 model generates
more vulnerable regexes than the other two models, whereas GPT-
3.5 generates less vulnerable regexes. When we increase the temper-
ature, the percentage of the ReDoS vulnerable regex increases for

the top-3 and top-10 results (vulnerable@1 and vulnerable@10).
For GPT-3.5, refined prompts lead to less vulnerable regexes than
the original prompts. We can see the same phenomena for Phi-1.5
but the opposite in the fine-tuned T5 model.
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Figure 6: vulnerable@k for the original and refined prompts

Correctness vs. Security. To better understand whether LLMs are
able to generate regexes that are both correct and non-vulnerable
we computed the number of regexes which are correct (i.e., passed
all the prompt’s test cases) and has a ReDoS vulnerability detected
by ReDoSHunter [31]. As shown in Figure 7, although GPT-3.5 and
Phi-1.5 generate vulnerable regexes, the majority of their correct
regexes are both correct and secure (i.e., ReDoSHunter did not detect
any vulnerability). On the contrary, the fine-tuned T5 model did
not generate any regex that was both correct and secure.
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Figure 7: Number of correct and vulnerable regexes.

4.2 RQ2: ReDoS Characteristics

4.2.1 ReDoS Computational Complexity. Table 2 shows the ReDoS
computational complexity class detected by ReDoSHunter [31] for
28,086 vulnerable regexes. Most of the vulnerable regexes have
a polynomial computational complexity (i.e., Polynomial Overlap-
ping Adjacency - POA, and Starting with LargeQuantifier - SLQ).
This is consistent with a previous study of ReDoS in large software
ecosystems [22]. Except for the Phi-1.5 model, the models usually
generate more POA than SLQ types of ReDoS. As the temperature
increases, the models tend to have more variation in the output,



Understanding Regular Expression Denial of Service (ReDoS): Insights from LLM-Generated Regexes and Developer Forums ICPC ’24, April 15–16, 2024, Lisbon, Portugal

which leads to more vulnerable regexes. The increment of polyno-
mially vulnerable ReDoS for the T5 model is statistically significant
with the increment of the temperature with the other two models
(i.e., for the original prompts, p-value for T5 and Phi-1.5 is 0.04 and
for T5 and GPT-3.5 is 0.004. The significant level is 𝛼 = 0.05 for the
Mann–Whitney U test). However, for Phi-1.5 and GPT-3.5-Turbo,
the increment of polynomially vulnerable ReDoS with the tempera-
ture are not statistically significant, i.e., p-value is 0.132 > 𝛼 . For
the exponential regexes, the most frequent complexities are: Expo-
nential Overlapping Adjacency (EOA), Nested Quantifiers (NQ),
and Exponential Overlapping Disjunction (EOD).

Table 2: Vulnerable regexes’ computational complexity.

T5 (Fine-Tuned) Phi-1.5 GPT-3.5

Original Refined Original Refined Original Refined

0.0

NQ 0 0 0 0 2 1
EOD 0 0 1 0 0 0
EOA 0 0 0 0 2 1
POA 270 367 6 13 16 7
SLQ 7 0 23 8 11 15

0.2

NQ 0 0 0 0 9 7
EOD 0 0 4 0 1 0
EOA 1 4 3 4 19 12
POA 766 1,249 122 70 68 46
SLQ 38 4 101 88 35 46

0.4

NQ 1 0 6 1 4 10
EOD 0 0 6 4 1 3
EOA 2 2 17 0 4 16
POA 1,235 2,079 206 145 42 80
SLQ 58 4 173 170 15 62

0.6

NQ 0 1 18 2 29 17
EOD 2 0 10 2 4 0
EOA 2 5 14 8 31 22
POA 1,567 2,611 278 194 156 107
SLQ 83 6 258 251 70 66

0.8

NQ 2 4 27 10 20 18
EOD 2 2 17 10 4 3
EOA 14 8 24 9 26 28
POA 1,917 2,915 346 267 139 144
SLQ 67 7 307 312 106 79

1.0

NQ 2 1 27 16 31 25
EOD 6 4 20 8 8 7
EOA 13 14 51 22 27 21
POA 2,100 3,112 441 274 212 154
SLQ 101 15 385 360 91 97

4.2.2 Regex Equivalence Classification. We manually analyzed a
statistically significant subset (95% confidence level and 5% margin
of error) of 336 ReDoS generated from the original prompt and
378 ReDoS generated from the refined prompt to classify them
according to the semantically equivalent categories described by
Chapman et al. [17]. Table 3 shows the results from three perspec-
tives5: (i) prompt type, (ii) computational complexity type, and
(iii) LLM. All five sub-categories have been identified from the
Custom Character Class (CCC) group for both prompt types. The
C1 sub-category (i.e., pattern that contains a non-negative custom
character class with a range feature) is the most common from this
group. For the Double-Bounded (DBB) group, we only observed
patterns that use the curly brace repetition with a lower and upper
bound (D1), and the questionable (i.e., ?) modifier, which implies a
lower bound of zero and an upper bound of one (D2).
5Due to space constraints, we omit the classes without any occurrence. The numbers
in this table do not add up to 714 because a regex can be in multiple categories (e.g.,
C1 and L2)

There are four sub-categories for the Literal (LIT) group, but we
only observed patterns that do not use any hex, wrapped, or oc-
tal characters but use at least one literal character (T1), which
is the most common from this group, and patterns with a literal
character wrapped in square brackets (T3). The Lower-Bounded
(LWB) group is mainly responsible for the polynomial vulnerable
regexes. Hence, all the analyzed pattern has at least one of the
sub-categories of the class: pattern using this curly braces-style
lower-bounded repetition (L1), pattern using the Kleene star (L2),
which is the most common from this group, and pattern using the
additional repetition (L3). In most cases, the L2 sub-category domi-
nates other sub-categories from this group. For the Single-Bounded
(SNG) group, we have mainly a pattern with a single repetition
boundary in curly braces (S1). Both prompt types have a similar
distribution of regex classes.

Out of the 714 ReDoS we analyzed, 19 and 695 of them are expo-
nentially and polynomially vulnerable, respectively. Exponentially
vulnerable regexes do not have any sample from the SNG group,
the L1 sub-category from the LWB group, and T3 sub-category
from the LIT group in addition to the other absent sub-categories
mentioned in the previous paragraph. It is noticeable that there are
a significant number of regexes from the T1 sub-categories.

Table 3: Regex Classification

Prompt Type Complexity Type Model

Class Original Refined Exponential Polynomial T5 Phi-1.5 GPT-3.5

C1 189 187 11 365 289 55 32
C2 15 6 2 19 5 15 1
C3 12 15 2 25 0 16 11
C4 61 40 8 93 6 66 29
C5 23 4 3 24 15 8 4
D1 24 4 2 26 12 11 5
D2 54 33 9 78 0 50 37
L1 12 8 0 20 16 4 0
L2 309 345 15 639 521 86 47
L3 87 89 15 161 54 75 47
S1 56 54 0 110 95 10 5
S2 1 0 0 1 1 0 0
T1 301 354 16 639 519 91 45
T3 17 7 0 24 11 8 5

Chapman et al. [16] made a pair-wise comparison between regex
classes about their understandablity by the developers. According
to the study, T1 over T3, D1 over D2, and S1 over S2 are preferred
(i.e., more understandable by developers). While C1 is favored in
comparison to C2, C4, and C5, none are significant. They also
checked the open-source projects about their presence. C1, D2,
T1, L2, and S2 are more frequently used from their corresponding
classes. We can see the same phenomena in our result in Table 3,
except for the Single-Bounded (SNG) group.

4.3 RQ3: Analyzing real ReDoS

4.3.1 ReDoS Computational Complexity. Table 4 presents the dis-
tribution of computation complexity patterns for the vulnerable
regexes. The distribution indicates that most of the ReDoS have
polynomially vulnerable patterns (i.e., POA and SLQ), which is
consistent with the result from our previous research question.
However, the order for the exponentially vulnerable ReDoS pat-
terns differs from the result of RQ2. We noticed more Exponential
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Overlapping Disjunction (EOD) patterns in the real-world dataset
compared to the other two patterns.

Table 4: Computational complexity classification

Pattern Name SOLA-DA CVE

NQ Nested Quantifiers 1 10
EOD Exponential Overlapping Disjunction 0 29
EOA Exponential Overlapping Adjacency 0 17
POA Polynomial Overlapping Adjacency 10 181
SLQ Starting with Large Quantifier 21 154

4.3.2 Regex Equivalence Classification. LLM-generated vulnerable
regexes have more samples from the C1 sub-category (Table 5).
However, in the real-world dataset, most of the regexes have C4
classes rather than C1 classes. Except that results for other cate-
gories are consistent with the LLM-generated ReDoS-vulnerable
regexes. It also seems that real-world datasets havemore varieties of
complex regexes, as we can find patterns that have a repetition with
a lower and upper bound expressed using ORs (D3) and patterns
using a hex token (T2).

Table 5: Regex classification for each dataset source.

Source Vulnerable Type

Class SOLA-DA CVE Exponential Polynomial

C1 4 67 14 52
C2 10 122 25 93
C3 6 162 33 117
C4 29 347 48 308
C5 0 1 1 0
D1 1 15 6 10
D2 19 251 48 202
D3 1 2 1 2
L1 1 12 3 8
L2 17 337 53 282
L3 20 309 38 274
S1 0 24 3 21
T1 20 376 48 327
T2 0 2 2 0
T3 6 348 47 288

Table 6 shows a pair-wise comparison of the distribution of Re-
DoS patterns from different models, prompt type, and tempera-
ture combination with the dataset from Li et al. [32] by doing the
Mann–Whitney U test. We can see that, for the distribution from
temperature 0.0 of the Phi-1.5 and GPT-3.5 model, we can reject
the Null hypothesis, and the result is statistically significant for
them. For other cases, we can not reject the Null hypothesis, but
the result is not statistically significant.

Table 6: p-values from the Mann–Whitney U test Result for

ReDoS Patterns across different temperatures (temp.).

Fine-Tuned T5 Phi-1.5 GPT-3.5

Temp. Original Refined Original Refined Original Refined

0.0 0.139 0.131 0.036 0.020 0.027 0.021
0.2 0.402 0.141 0.222 0.209 0.421 0.295
0.4 0.421 0.143 0.599 0.222 0.094 0.310
0.6 0.402 0.151 1.000 0.675 0.917 0.600
0.8 0.530 0.151 0.600 0.675 0.691 0.691
1.0 0.548 0.310 0.421 1.000 1.000 0.691

For the regex classes, the distributions with exponent ReDoS pat-
terns reject the Null hypothesis. The result is statistically significant
(i.e., 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.015), while regexes distributions with the poly-
nomial ReDoS patterns can not reject the Null hypothesis, and the
result is not statistically significant 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.970).

4.4 RQ4: Developers’ Concerns

Figure 8 summarizes the developers’ concerns as a taxonomy.

ReDoS mitigation
approaches

Update old dependency 82
Remove insecure regex 3
Add timeout to prevent redos 9

Validate string
before matching

Avoid long strings 13
Miscellaneous string validation 2

ReDoS detection
tools

http://redos-checker.surge.sh 4
https://devina.io/redos-checker 5
jagracey/RegEx-DoS 1
warning from a redos tool 18
safe-regex (NPM module) 3
NicolaasWeideman/RegexStaticAnalysis 2
ua-parser-js (NPM module) 2
False positive of ReDoS detector 6

Understanding
regex for ReDoS

Discuss a ReDoS pattern 16
RegEx explainability 20
Catastrophic Backtracking 37
Wondering whether RegEx is ReDoS safe 6

Miscellaneous

Find that it is not a ReDoS problem 9
Server ReDoS 7
Add ReDoS test 10
ReDoS in PHP 4
Recognize redos 111
Realize ReDoS in project 66

Change to a non-
vulnerable regex

Replace regex with a safer one 103
Use ReDoS-safe

engines
google/re2j 1
google/re2 13

Figure 8: Taxonomy of developers’ concerns

4.4.1 ReDoS Mitigation Approaches. The most discussed topic was
on the different mitigation strategies for Regular Expression De-
nial of Service (ReDoS). The most discussed approach (48% of the
discussions), is "Change to a Non-vulnerable RegEx". Notably, 103
out of 117 instances in this category involve participants opting to
change to a non-vulnerable regular expression independently. At
the same time, the remainder refers to using ReDoS safe engines
(e.g., re2 from Google [6]) to mitigate ReDoS.

The second most prominent approach "Update old dependencies"
comprises 33.6% of the discussions, indicating a significant empha-
sis on keeping dependencies updated to enhance resilience against
ReDoS attacks. "Utilize ReDoS Detection Tools" accounts for 7.4%
of the mitigation approaches. The most popular tool is the ReDoS
checker [7]. Moreover, 13 out of 15 discussions in the "Valid String
before Matching to Avoid ReDoS" category focus on avoiding long
strings as a strategy to mitigate ReDoS attacks. "Add Timeout" con-
stitute smaller segments of the discussion at 3.7%. While such an
approach may help mitigate the problem through a “bandaid” solu-
tion, they do not address the root cause of the problem. As there are
only 3 data points that directly remove regex to avoid ReDoS, the
analysis suggests that the community predominantly leans towards
proactive strategies like modifying regular expressions and updat-
ing dependencies to mitigate the risk of ReDoS attacks.

4.4.2 Understanding RegEx for ReDoS Prevention. A significant
portion of conversations is dedicated to identifying and discussing
ReDoS patterns. Specifically, there are 16 instances where these
patterns are scrutinized meticulously, illustrating the technical com-
munity’s diligence in recognizing and addressing such vulnerabil-
ities. RegEx Explainability has also surfaced as a significant area
of interest, accounting for 20 related pull requests or posts. This
topic encompasses approximately 29.1% of all ReDoS discussions
on Stack Overflow, underscoring a prevalent demand among de-
velopers for clarity and a comprehensive understanding of Regex
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functionalities in the context of ReDoS. Another pivotal concern
highlighted is Catastrophic Backtracking, which has garnered 37
mentions. Furthermore, some developers struggled with whether a
regex is ReDoS safe, with 6 instances and predominantly on Stack
Overflow. This demonstrates a proactive approach within the de-
veloper community, where there is a concerted effort to ensure
code resilience against ReDoS vulnerabilities through preemptive
measures and active participation in forum discussions.

4.4.3 Miscellaneous. While the most vigorous discussions often
revolve around direct approaches to fixing ReDoS and the under-
standing of regex to combat ReDoS, other less prominent but signif-
icant aspects also permeate conversations on developers’ platforms,
GitHub and StackOverflow. Server ReDoS discussions tally up to
7, indicating a keen interest in how ReDoS may affect server sta-
bility and performance. There are 4 conversations about ReDoS
within the scope of PHP programming, suggesting a niche but
vital concern for developers working with this server-side web
development language. Furthermore, a proactive movement, as evi-
denced by 10 posts, towards integrating ReDoS tests in development
workflows, demonstrating a commitment to preemptive defense
measures against potential vulnerabilities.

There’s a cluster of 9 instances where discussions initially flagged
as being about ReDoS turned out to be unrelated, highlighting a
potential gap in the community’s understanding or identification of
the issue. These topics, while not as dominant as the more general
discussions on ReDoS, signify the multifaceted nature of the issue
and the community’s diverse approach to tackling it.

5 DISCUSSION

Usage of LLMs for Regex Generation. The RQ1 results show
that LLMs can effectively generate regular expressions, especially
GPT-3.5 [5]. A carefully crafted prompt, i.e., a refined prompt, can
produce the correct regex within the top 10 generations 53% of
the time. However, they can still be vulnerable to ReDoS attacks.
In 14.4% of cases, the GPT-3.5 model [5] can generate at least one
vulnerable regex. LLMs tend to generate ReDoS-vulnerable regexes
with polynomial patterns. However, they also significantly generate
regexes with Nested Quantifiers (NQ), a type known for exponential
vulnerability. LLMs can be utilized for generating regexes from
natural language descriptions, but they should be vetted for ReDoS
vulnerability before being used in production.

ReDoS generation. Our results in RQ2 and RQ3 indicate that the
presence of Kleen star (∗) or pattern using additional repetition (+)
is mainly responsible for introducing ReDoS attacks, as they can eas-
ily be exploited with long input. It is also noticeable that most of the
ReDoS follow polynomial patterns rather than exponential patterns.
There is also the presence of a significant number of custom char-
acter classes. From the analysis in RQ4, we found that developers
have limited knowledge about regex and ReDoS, which can result
in vulnerable regexes being deployed into production.

ReDoS Discussion in GitHub PR and StackOverflow. In the
collaborative space of GitHub PRs and Stack Overflow discussions,
developers deliberate the nuances of ReDoS vulnerabilities and their
mitigation. However, discussion in GitHub pull requests and Stack

Overflow happens differently. In GitHub PR, the discussion focuses
on a particular project, but in Stack Overflow, it can be about any
specific matter. If we dive deep into the taxonomy described in
RQ4, developers discussed more about understanding a regex than
their mitigation approaches. For instance, developers inquire about
the explainability of a regex and question its safety. They caution
against “Catastrophic Backtracking” in regexes provided on Stack
Overflow. On GitHub, the discussion primarily revolves around
mitigation strategies, such as transitioning to safer libraries and
employing timeout mechanisms and detection tools.

Implication for the developers. The key takeaway for developers
is that LLMs can be effective for RegEx generation, but are not
free of ReDoS vulnerabilities (RQ1). As such, developers would
benefit from vetting them using a ReDoS detection tool (such as
ReDoSHunter [31]). The classification in RQ2 indicates that LLMs
generate ReDoS vulnerable regexes patterns that can be less under-
standable by the developers, according to the study from Chapman
et al. [17]. This takeaway is also confirmed in RQ4, which showed
that developers need to be made aware of ReDoS or understand
their effect. These findings also suggest that the developers can
employ various strategies, such as implementing tests for ReDoS
vulnerabilities, imposing execution time limits, or validating user
inputs to mitigate ReDoS attacks. Utilizing regex engines known
for their safety and regularly updating libraries prone to vulnera-
bilities are also advisable practices. While comparing the generated
LLM-generated and real-world ReDoS vulnerable regexes in RQ3,
most of the cases, the distribution may be the same as we can not
reject the null hypothesis. Thus, developers should be aware that
LLM-generated regexes may have the ReDoS with similar patterns
from the real world ReDoS-vulnerable regexes. In short, our results
showed that while LLMs can aid in regex generation, their effective-
ness might require further refinement, as they are susceptible to
ReDoS attacks. Consequently, rigorous testing for correctness and
security is paramount before integrating LLM-generated regexes
into production.

Implication for Researchers. Our findings highlight a persistent
necessity for the explainability of a regex, with understandability
being a key factor in mitigating ReDoS attacks. This study illumi-
nates the aspect of ReDoS comprehension for the first time. Yet,
there is ample scope for future research to delve deeper into the
impact of mitigation techniques applied in real-world software to
facilitate the transition away from libraries vulnerable to ReDoS and
to enhance the understandability of regex as a preventive measure
against ReDoS attacks. With the increasing prevalence of LLMs,
there is a significant opportunity for researchers to develop meth-
ods that augment the efficacy and security of regex generation,
particularly in the context of ReDoS threats.

6 THREATS TO VALIDITY

We collected original prompts from RegexLib [8] and crafted the
refined prompts and additional test cases ourselves. The crafted
refined prompts can be subjective and introduce an internal validity
threat. We mitigate this threat by having two authors creating the
refined prompts and having the additional tests checked using
the ground truth from RegexLib [8]. The data collection step was
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checked by the senior author, and less than 2% of the prompts
had disagreements and were adjusted by them. Another internal
validity threat is to manually assign a regex class to each regex and
open coding for GitHub and Stack Overflow posts. However, the
authors carry significant experience with software development,
which helped mitigate these issues.

We used ReDoSHunter [31] to find a ReDoS vulnerability, which
can introduce external validity threats. However, we chose this tool
because it is a state-of-the-art technique with a precision of over
95% for the dataset used in RQ3 and that has been shown to find
vulnerabilities in real software systems. Another external validity
threat is to include only models based on the transformer [63] archi-
tecture. However, this is the most popular architecture for current
state-of-the-art code generation models. Our work also includes a
fine-tuned model, an open-source pre-trained model, and a closed-
source model generalized for different tasks, which is in-line with
the guidelines for empirical SE research using LLMs [47].

LLMs are prone to generate unstable output, but they can be con-
trolled with its temperature parameter [15]. While the lower tem-
perature provides a more predictable output, the higher temper-
ature provides more variation in the output. As discussed in the
methodology section, we provided comprehensive results by gen-
erating 10 regexes and varying temperatures from 0 to 1 with 0.2
increments. We also tackled data contamination threats by not
only using the original prompts retrieved from RegExLib [8], but
also refined prompts, where we manually re-worded the problem
descriptions. This is a prompting technique called metamorphic
testing [47], where the inputs are transformations of the original
inputs that are different but maintain semantic equivalence to the
original input.

7 RELATEDWORK

Regular expressions andDoS attacks. The study of regex compre-
hension began with Chapman et al. [17], who were among the first
to explore how different regex features impact their understand-
ability. Michael et al. [36] identified multiple difficulties developers
encounter with regexes, revealing that less than 40% of developers
were aware of the security vulnerabilities associated with regex
usage. Hassan et al. [25] developed a theory of regex infinite ambigu-
ity to characterize regexes vulnerable to ReDoS, proposing a set of
anti-patterns and fix strategies to enhance developer understanding.
Unlike these studies, our work focuses on ReDoS comprehension
mapping with the RegEx comprehension for both the ReDoS vul-
nerable LLM-generated and real-world RegExes.

The empirical study of ReDoS vulnerabilities has revealed signif-
icant security risks across various platforms and programming
languages [20, 21]. Barlas et al. [13] shed light on the inherent dan-
gers present in web services through their pioneering black-box
study of live services, highlighting how client-side regex sanitiza-
tion logic can render ReDoS vulnerabilities. Complementing this,
Turoňová et al. [58] delve into the weaknesses of nonbacktrack-
ing regex matches to ReDoS attacks. Furthermore, the prevalence
of ReDoS issues has been extensively documented, indicating vul-
nerabilities on dozens of major websites and within hundreds of
JavaScript projects [23, 57], as well as thousands of codebases in

Python and Java [22, 68]. These studies collectively underscore the
critical need for heightened awareness and robust countermeasures
against ReDoS attacks in software development.

Vulnerable regexes detection. Berglund et al. [14] presented an au-
tomata model to systematically analyze catastrophic backtracking.
Wustholz et al. [68] introduces Rexploiter to identify vulnerable
regexes and confirm their exploitability with crafted input strings.
Building on the concept of attack pattern generation, Shen et al. [50]
introduced ReScue, a three-phase gray-box technique that gener-
ates strings that trigger ReDoS. Further advancing the methodology,
Liu et al. [34] proposed an integrated approach (ReDoSHunter) that
combines both static and dynamic analyses to efficiently detect
ReDoS vulnerabilities. In our work, we utilized the advanced ca-
pabilities of ReDoSHunter [31] for detecting and characterizing
ReDoS-vulnerable regexes.

Vulnerable regexes repair. Van et al. [62] explored how to trans-
form exploitable regexes into efficient, ambiguity-free alternatives.
Chida et al. [19] pioneered a Programming by Example method [67]
to repair regexes. Li et al. [32] introduced RegexScalpel, an au-
tomatic regex repair framework that fixes vulnerabilities while
ensuring semantic equivalence to the original regexes. We used the
evaluation datasets from Li et al. [32] to look in the comprehension
of the real-world RegExes prone to ReDoS attack.

Empirical studies on LLMs. As the field progresses, the advent
of code-generating Large Language Models like GitHub Copilot
and OpenAI’s Codex has spurred research into their efficacy and
security implications. Nguyen and Nadi [39] and Finnie-Ansley et
al. [24] have evaluated these tools’ performance on coding problems
and student assessments. In contrast, Vaithilingam et al. [60] looked
into user interaction with Copilot, particularly in error recognition
and task completion times. Security analyses of LLM-generated
code from multiple works [12, 42, 44, 48] reveal varying incidence
rates of security bugs and the influence of LLMs on secure coding
practices. Sobania et al. [55] and Dakhel et al. [37] provide compar-
ative studies of Copilot’s solutions against traditional benchmarks,
addressing correctness, complexity, and diversity. Furthermore, Sid-
diq et al. [52, 53] expand the discussion to the prevalence of code
smells and the ability of LLMs to generate unit tests.

The collective body of research underscores the necessity of a dual
perspective approach that considers both the developers’ compre-
hension and technical tools for detecting and mitigating ReDoS vul-
nerabilities. Our work bridges this gap by offering insights into de-
velopers’ practices and the efficacy of LLM-generated regex patterns
in enhancing software resilience against ReDoS attacks.

8 CONCLUSION

Our investigation provides a dual perspective on Regular Expression
Denial of Service (ReDoS) comprehension, emphasizing the inter-
play between developer discussions and LLM-generated regexes.
We have conducted an extensive analysis, investigating 274,320
generated regexes to benchmark the performance and security of
LLM outputs. Our study also categorized ReDoS-vulnerable regexes,
connecting them to established equivalence classes and dissecting
real-world software instances to elucidate prevalent patterns and
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classifications. We also presented a novel taxonomy derived from
developer interactions on GitHub and Stack Overflow, highlight-
ing the community’s approach to addressing ReDoS concerns. The
insights gained from this study not only shed light on the current
state of ReDoS comprehension but also pave the way for future de-
velopments in creating more secure regexes through the assistance
of LLMs, bridging the gap between theoretical understanding and
practical application in the realm of software security.
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